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Abstract :

We give an axiomatic way to present the special relativity .
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(1) Context

This text is a enhanced partial translation of :
https // archive -org/details/matricesdelorentz/mode/2 up

(2)Basic principles :
(&) We consider a point (or observer) O, in an affine space E, which models
%

our physical spatial space, of direction E, vector space in 3 - dimensional Euclidean
isomorphic to R':' We associate O with an orthogonal coordinate system R(O,x,y, z)

with a base B ( Oi,j, k ) with its natural Euclidean structure.

We provide O with a clock which measures time t.

We suppose that at each point, fixed with respect to O, of the coordinate system R

is associated with a clock synchronized with that of O which measures the same timet.
Synchronizing Clocks allows to have a variable t independent.

We assume that R is Galileanthat is tosay if a moving point, left to itself,

on which acts no force, continues its trajectory in straight line,

at one uniform speed «This hypothesis implies the existence of one only time,

except for a change of origin or a change of unit.

We can thus construct a vector space with 4 dimensions and

a frame ﬁ’( O_pst,x,, z), O,_ yrepresenting the point O at time t = 0 in this space,

associated with a base & ( O,_y, Vs s By Jy k) orthonormal for the bilinear symmetric form
form, ¢(t,x,y,z2) =t -x? -y 27 (¢ being the speed of " light)) .

(B) We consider another point (or observer) O ' having a uniform speed 'V relative to O

and measured by O with which is also associated an orthorormal coordinate system R'(O', x', y', z')
e e

associated with a base B '( o,i'j' k ') with its natural Euclidean structure. We provide O
with a clock which measures time t.

We suppose that at each point, fixed with respect to O', of the coordinate system R'

is associated with a clock synchronized with that of O' which measures the same timet'.
Synchronizing Clocks allows to have a variablet' independent.

We assume that R' is Galilean.
Also we can thus construct a vector space with 4 dimensions and

a frame ﬁ"( et X ¥, z'), O',_ yrepresenting the point Q' at timet' =0 in this space,

associated with a base ﬁ’( O\ y,ct,i',j k ') orthonormal for the bilinear symmetric form

form, ¢'(t',x",y', 2') =2 -x? -y'z-z'z (¢ being the speed of " light)) .

We will assume that the 2 observers pass through the same point of E during their journey



and at this time,
O and O 'set their clock to 0 We will assume that the 2 observers pass through the same point of E
during their journey and at this time, O and O 'set their clockto 0 (t=t'=0).

This nonessential hypothesis simplifies the calculations and we will talk about the bases & ( 0,ct, 7,

ik)y
and ﬁ"( O,ct,i',j,k ') by setting 0 =0,_, =0',_,.
Otherwise we can consider a third observer Q", having the same uniform speed .

%

V relative to O, but whose trajectory, a straight line parallel to that of O, intersects that of O.
The spatio — temporal units being defined by the physical laws which we will suppose

to be the same in the 2 frames , we will choose the same units in the 2 frames.

() We assume that the photons move in a straight line at speed c, independently

of the considered reference frame. We also assume that c is the maximum possible speed.

This implies that for a photon emitted from O at time t = 0, that is to say also from O' at timet'=0,
its coordinates in B and B' will check simultaneously :

cztz-xz-yz-z2=0 < czt'z-x'z-y'z-z'2=0 (conservation of the cone of" light).

(3) Relative velocity of 2 frames :
In classical mechanics, if we consider 2 observers O and O' in uniform relative
—_ —

motion to the other we can write that 'V ,, [0~ " Vo | o for these 2 observers :

the time is absolute as well as the distance || 00’ || )
In special relativity , the laws of physics are the same in the 2 frames in uniform relative
motion to the other , that is to say that same objects placed under the same conditions
will produce the same effects :
Measuring velocity of O'relative to O and measuring the velocity of O relative to O'
will give the same result as long as these 2 velocities have the same norm .
As the 2 measured times t and t' are different likewise for spatial coordinates,
Now remembering that at this stage of the study , we only know that the transformation
is linear and that the velocity of light is invariant, we will justify in an elementary way
that the relative velocity of the 2 frames in uniform translation has the same norm,
measured in one or the other frame and vectorially opposite.
Let be two spatial frames R and R' in uniform translation. Let assume that
their origins O and O’ coincide only once at during their relative movement
at a point in the spatial space and at this point the clocks of the two spatial frames
aresetto 0 :t=t'=0.
We recallthat the time associated with any fixed point by relation to O in R
is synchronized with O .
Similarly for the time associated with any fixed point by relationto O'in R'
is synchronized with O’ .
We can thus define the uniform velocity of a point P(t) with respect to O in R by:

> OP(t;) —OP(t,) .
( VPI 0)R= s . Similarly in R’ .
— -
Knowing that 00 '(0) =0, we havein R :
’ _—

2 _00'() 00w _ (3

( 0'10>m_ t ¢ "( olo')m ’
_— >
Similarly in R' knowing that 0'0(0) =0 :



o'o(t' oo'(t'

<_&010')ﬁ,,= tft) - t'(t) - Zo'lo)m'
> >

Is true that ( VO'IO).Q=-( VOIO')W ?

—
We already know that these 2 velocities are parallelto O0 ', constant and in opposite directions.

Let us evaluate theﬁ; respective norm Let 1/ be the vvelocity of O 'relative to O in R.
How to measure || v || ? For this we are going to carry out a simple experiment
measured from O and O'. We will note .%’4 and .%’4' the frames in the space in 4 dimensions,

associated with R and R' and at their respective clock .
As the transformation which makes it possible to pass from .%’4 to .%’4' is linear, it can be represented

by a matrix M, ﬁ’4 and ﬁ’4 being provided with adequate orthonormal bases B and B ' .

Experiment :
At timet=t =0, O and O’ coincide.
Attime t=t) > 0 we send a light ray from O to O" which returns it to O at time t =t;. ,

and reaches O at time t =t,. .
We denote by O'(t) and O(t) the position of O'and O at time tin R.
— —

We assume that the axis Ox is parallel to 00" :



O(fz) O' th) t=t,
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As the movement is uniform recﬁz;linear along the line defined by O g)nd v:
we therefore have 00'(1‘0) = | V||.t0, similarly O'(t0)0'(t1) = 7. (tl —to).

. . . : (L=t  (L71Yh)
The duration being the same on the outward and return journey t, =t, + 3 = 3 .
If ¢ is the speed oi:the light : N
(1, —ty)e=2 I ¢, + 2| £ (t; — 1)
. 7 < 2% (B2 h)
therefore . (tz —t0)c—2|| V|| t; and therefore . || V|| = 21, c= 1, c
From the observer's point of view on O, he sees a ray starting from O at timet ' = t,’,
H
and 0'0(1," = || ".4,"..
the ray will arrive at time t,', then it will depart towards O which it will touch at time t,".

The ray will therefore have traveled the distance c( t,'—t,’ )

— —_— —
In the direction O0' the distance traveled is : O 'O(t0 ') = || 14 'H .t,' and in the return direction :

— — —
H V'||.t0'+ || V'H.(tl'-t0') + H V'”.(tz'-tl') = ||_&'|| t,' and therefore :




(tz '-t '0) c
LetM = (m,; j) be the transformation matrix from .%’4 "to ﬁ’4
O has for coordinates (ct, 0, 0, 0) in ﬁ’4,
O will have for coordinates (ml’ pCt,my pct,mg pct,m, rct) dans .ﬁ’4' ,

4 4
" 2 (E27thy) (1)
so ct'=m; L.ct and therefore || 14 || A1 .c 1,

(t-)e= 1 b+ 1271 7 and [27] =
2 "ty")e 1 2 an

has the same value in R 'and R.
The experiment can be seen by the 2 observers O and O' as an experiment
> >
to measure the relative speed between O and O' we have : H v, 0” R H Y 0,| R
We can therefore Spgflk of the relative speed of 2 frames in unzform translatzon R and R'
with speed V et - ¥V and with common module || V ||

Note : (See : N.M.J. Woodhouse. " Special Relativity " «Springer 2002 )
If we consider an observer on O who observes a clock on Q' which moves away from O,
with a uniform speed and an observer on Q' who observes an identical clock
on O which moves away from Q' we are in a completely symmetrical situation since
we have the same speed in module in the two cases The physical laws being the same
in the 2 Galilean frames in uniform translation the coefficient of expansion
of the durations will be the same in the 2 measurements made in each of the 2 frames.
So if we denote N = (”i,j) the inverse matrix of M, knowing thatt"=m; ;.t et t=n; ;.t",

by what precedes we will have m; =n; ;.

We will then denote ythis common value .

To go further we need :
Lemma : If M= (mi,j) is symmetric matrix then : (tXMX= 0OL,VX e R") = M=0.
Proof : As M is symmetric M can be diagonalized : M =" QD where
Qis orthogonal and D diagonal then XMX="X"QD2X =0.
n

IfDissuchthatdij=0f0ri #j,and Y=!2Xthen2;liiyf=0 VY e R"
i=1

for Y=e;, with (¢ )i:J - the canonical basis of R", we have

d;-1=0 = d; =0 -We can point out that the result is false

if M is not symmetric : take M= XMX=0VX €R"

But we have the result (tXMY, VX e ", VYER") = M=0,

since e, -M-e, =m; ; «From this we can deduce again the lemma :

IfMis Symmetric and if we havetXMX=0, VXeRrR" (1) then VY € R" 'YMY=0 (2)
andtherefore X+Y)M(X+Y) =0 (3),

so 'XMX + 'XMY + 'YMX + 'YMY=0 and XMY + 'YMX=0.

M being symmtreric and antisymmetric M =0 .



Corollary : ' (MX)G(MX),VX € R" = 'MGM=G.

Proof :

"MX)G(MX) =X 'MGMX=XGX,VX € R" < X('"MGM-G)X=0,VX € R",
= 'MGM =G.

Lemma : (See : N.M.J. Woodhouse . " Special Relativity " «Springer 2002 )

1 0 0 0
0 -1

Let A €M (R) be a symmetrc matrix and G= 0 0 -1 o
0 0 0 -1

Let's assume VX : 'XGX=0 = XAX=0,
then 3 ¢ € R suchas A = aG .

Proof :

If A is symmetric we can writeas :

a
a S

We compute for X = [u,tY], Y e M3’ MR, rER:

A= where 0t € R, a EM3’ 1(R) .S EM (R) S symmetric .

r

Y

a ‘a
a S

'XMX = of +2 Fa¥ +¥SY (1)
We note'U=[u, v, w| with? +v' +w’=1 et’X=[1, U] (2)

In this case 'XGX =0 and then 'XAX=0 ,
and (1)can be written with r=1,Y=U.

VU defined by (2) : XAX=a +2'aU +USU=0.(3)

If Uverifies (3) -Uverifies (2) and (3) then:
o+2%(-U)+(-U)S(-U)=0 (4).

By adding (3) and (4) itfollows :

V Udefined by (2) : @ +'USU=0 @’U(ald3 +S)U=0.

If ’U(ald3 +8)U=0 VU defined by (2)

tU(aId3 +S)U=0is also true for V' U eRrR’.

According to the previous lemma : S=-a-1d;.

2
XAX = [1'Y] =ar +rYa +FaY+YSY then :

By substracting (3) et (4) we have: VU aU=0 =a=0.
Then : _

o
0 -aa 0 0
0
0




This result is a special case of a more general result :

Let be gpand @' be two symmetric bilinear forms such the isotropic cone C( @) # {0}
then T4 #0 ER p=4¢'< C(9) =4 .

(cf: R.Goblot ."Algébre linéaire "Masson 1995 .)

Now we can prove :
Theorem : Let M = (ml., j) be the transformation matrix from ﬁ’4 "to ﬁ’4

Let's assume VX : XGX=0 = XMGMX=0 (1),
(M), ,=( M), (2) then

‘MGM =G
Proof: (cf: N M «J - Woodhouse " Special Relativity " «Springer 2002 )
From (1) and the previous lemma, since "™MGM is symmetric ,
"MGM = oG for some & € R, o # 0 since M is non singular.

-1 _ _
Hence (tMGM) = (aG) 1=0{1G and
MG=a'¢ M=>Mm"=-a"¢ MG
. -1
We have ( M)1’1=( tM>1’1=( M 1)1’1=(0{ GtMG)I’Iby (2)
and

1 0 o0 ol ™1 M2 Myz Mg

G MG - 0 -1 0 0 My My, My3z My 0 -1
0 0 -1 0 mg , m; o, m; g ong, 0 0 -1 0
00 0 1|l m, my om0 0 0 1]

Hence (G tMG)L / =m1’1and a=1.

Note : (1) is a consequence of the invariance of the light cone .
For (2) see the previous note .

(4) Lorentz matrix study :

We start by giving the general properties of Lorentz matrices then
we give an estimation of each term of these matrices .

(We note X and "M the transpose of the column vector X and the matrix M) .
Introduction :

n
Let D(X) =x12 - Exiz with ( X = (Xp 500 Xy) ) be the quadratic Lorentz
i=2

1 0

form and let G be the matrice 0 1d where 0 is the zero - column of R"

Rn-l

DX)=XGX VX € R".
We seek the matrices M such
D(MX) = ®(X) < "(MX)G(MX) =X MGMX="XGX,VX € R".

1,



Lemma : If M= (m,.,j) is symmetric then : (XMX=0,VX €R") & M=0.

Proof : As M is symmetric M can be diagonalized : M =" QDO where
Qis orthogonal and D diagonal then XMX="X"QD2X =0.

n
IfDissuchthatdij=0f0ri #j,and Y=!2Xthen221iiyf=0 VY e R"
i=1

Jor Y=e;, with (¢) the canonical basis of R", we have

i=1l..,n

d;-1=0 = d; =0 -We can point out that the result is false

if M is not symmetric : take M= JIXMX=0 VX €R" -

But we have the result (tXMY, VX e ", VYER") = M=0,

since e; -M e =m, «From this we can deduce again the lemma :

If M is symmetric and if we have tXMX=0, VXeR" (1) then VY € R" 'YMY =0 (2)
and therefore t(X +YMX+Y)=0(3),
so XMX + 'XMY + 'YMX + 'YMY=0 and XMY + 'YMX=0.
M being symmtreric and antisymmetric M =0 .
Corollary : ' (MX)G(MX) ,VX € R" < 'MGM=G.
Proof :
"(MX)G(MX) =X 'MGMX="XGX,VX € R" < 'X('"MGM-G)X=0,VX € R",
= 'MGM =G.
Definition :
If Mis such'MGM =G, M is called a Lorentz matrix .

Theorem 1 :
The Lorentz matrices form a subgroup L of GL, (/R), group of the invertible matrices of

dimension n .
Proof: (I)Asld_ €L, L # @ and det('"MGM ) =det(G) =-1 = det(M) # 0,
R

- {Idﬁn} SL SGL(R).

_1 t
(2)YMGM=G = G=6¢"T1=m"T6('M) "=Mm"G (M").
(3)If M ELand N €L , we have (MN)G(MN) ='N('MGM)N=G.
From (1), (2) and (3) we can infer the theorem .
Corollary :
myp ., ~my gy "mz, cmy g
t -1 ¢ Ty, My, M3, My,
MGM=G =M =GMG= ifM=(mi,j).
my 3 omy 3 mz g My

My oy My M3y Myy
A Lorentz matrix being invertible by (1) , M has a unique polar decomposition :
M=S80, S symmetric and definite positive , O orthogonal .

We refer to a classical theorem : (theorem of decomposition)

Any invertible matrix A can be written, in a unique way, as a product : A =S80 =0,S, ,



where S, S, are positive definite symmetric matrices , O, O, are orthogonal matrices,

here :S=+'44 ,S=\J A4 .
(Cf. F.R.Gantmacher : Theory of matrices. AMS Chelsea Publishing 1959).
Inthe case of L we can be more specific .
For that we need some lemmas .
(Cf. J-M. Souriau."Calcul Linéaire " « PUF 1964 orJ -Gabay 2000)
Lemma 1 :
LetX € R" besuchthat XX =1 +Let N the matrix define by :
@n ; being the null matrix of Mn _ I(R) ,

0 X
N= X O B . Then wehave Vo € R:
ch( ) sh ()X
M= aN) = 1
er(aN) = | o (a)x (14, _, +(ch(a) -1)x'x) )

is a Lorentz matrice of M (R) suchas det(M) =1 and its eingenvalues are strictly positive .
n

In short M is a definite positive symmetric Lorentz matrix .

1 0

Proof': We have N’ = 0" ! being the zero - column of dimension n — 1,

0" ! x'%%x

since XX =1 and( XX)(X'X) = X("XX)'X we have N°=N.
We can notice that for all square matrix A and for all @ € R,

= re Al e 2n
A)=22 sh(a)=) —— , ch(a)=
expd) = 200 k(@)= 2 g ehla) = 2
aZNZ a3N a4N
thereforeexp(a]\’)=ldm+a]\’+ 21 T3 Tt et
2p—1 2p 2
" a’ N +apN "
2p =1 2p)] Tm————
=1d_ +sh(a)N + (ch( a) -1 )N
o0 0 sha) X (ch( @) -1) 0
=11 N ||+ + _1 r | whichshows (1) .
0 0 1 sh(a)Xx @ 0" (ch( @) -1)XX

Now let's show that M is of Lorentz that is to say 'MGM =G .
We can remark that M is symmetric and with Id =Idm

ch( ) sh(a)X 1 -1 ch( a) -sh(a)X

sh ()X (Id + (ch( @) -1)th) »r-1 - sh ()X - (Id + (ch( @) -1)th)

and



ch( o) -sh ()X ch( ) sh(a)X

sh (@)X —(1d+(ch( @) —I)XfX) (sh (@)X (1d+(ch( ) -I)XfX)

Let us estimate a, b, ¢, d .
a=ch’( @) — s’ (a)'XX =1, since XX =1.
b=ch( a) sh(a)X - sh(a)X (Idm_l +(ch( @) -1 )XtX)

=ch( @) sh(a)X - sh(a)X -sh(a)(ch( @) -1) XXX
=ch(a) sh(a)X - sh(a)X - sh(a)ch( &)X +sh (a)X =0,
c=ch(a) sh(a)X - (Idm_1+(ch(a) -1 )X’X)sh(a)X

=ch(a) sh(a)X- sh(a)X - sh(a) (ch( @) -1)X=0,

d=sh2(a)X’X—(Id +(ch( @) -1 )XtX)Z but :
mrn —1

(Id + (ch( @) -1 )XtX) (Id +(ch( @) -1 )XtX)

Rn -1 Rn -1

=1+ (ch(a) -1 VXX +(ch( @) -1)XX +(ch( @) -1)°XXX'X,
R~

since XX =1 then X 'XX)'X =XX (association of matrix product ) ,

et (ch( @) 1) =ch’( @) —2¢h( @) +1

=1, +(2(ch( @) -1) +ch’( @) —2ch( @) +1)X'X

=1d +(ch’( @) —1)X'X =Id +sh’( o) XX
B — 1 m -1

finally :

sh’ () XX - (Idﬁ

n —1 Rn—l'

+ (ch( @) -1 )XtX)2=—Id
1 ‘0

-Id
Rn — 1

b

Therefore

c

and M is of Lorents .
Another proof possible is :

ch( ) sh (o)X
sh (o)X (Id + (ch( @) -1 )XtX)

1 0

0 -1d
rn —1

exp(aN)G=
rn —1

ch( a) -sh (@) X

sh ()X - (MR" _, *(eh(a) -1 )XtX)

ch( a) -sh (a) X

-sh (&)X (Idm _,*(ch( @) -1 )XtX)

1 0

-1d
Rn — 1

Gexp( -aN) =




ch( @) -sh (a) X
sh ()X - (Idm _, *(eh(a) -1 )XtX)

therefore exp( oN)G = Gexp( -aN) = exp(aN)Gexp(aN) =G
as M=exp(aN) est symétrique ' MGM =G et M est de Lorents .
For a third demonstration see : J - M. Souriau."Calcul Linéaire " - PUF 1964 orJ -Gabay 2000 .

Let us now show that det(exp(A) ) = A forA eM, (F) :

Let us consider A as an element of M, ( C) . A is then trigonalisable

and can be written : A=P 'BP, with B upper triangular whose diagonal
is composed of the eigenvalues /11. of A.

By relying on the definition of the exponential of a matrix we can write

exp(A) =P_1exp(B)P.

By expanding exp (B) into series and by noticing that B kis upper triangular V' k > 1.
A

Then exp(B) has for diagonal the e >0 T herefore

By

4, ="
det(exp(A)) =det(exp(B)) =]7e i g i A
i

Let's go backto exp( N ) :
As aN is a zero — trace matrix : det(M) =det(exp(aN)) =1 and the eingenvalues of
M= exp( aN ) are strictly positive .



Lemma 2 :
If M is a matrix of Lorentz whose first column K is

of the form : K1=t(a, 0,..., 0) then Mis ofthe form :

t

£ Q t t
M= e=+1,0=(0,0,0), 2Q2=1Id (1).
0 0 ot
Conversely any matrix of this form is of Lorentz.
Proof :
a !
- . ty _
Let M= ] c with C EM3(R) , L (ll, L, 13) .
As ( tMG)M=G we have :
a 0 a 'L
G=
L -C 0 C
o a'L

al L'L-'cC

by identificationax=+1,L =0, ‘cc=1d

Rn -1
& tQ £ tQ
Conversely : , G =G.
0 2 0 £
Theorem :
Every matrix M of Lorentz can be put in the form :
£ 0
M=exp(aN) - witha € R, e=+1,
0o 0
0 tAX . n—1 t !
N=  withX € R suchas : XX=1, QQ=Id_, _, .
X o R

This polar decomposition is unique .
Proof :
Let M be a matrix of Lorentz M= (m; ;) and M, the first column of M.

If M, = (mi,l ) then :
t _ 2 2 2 _ _
MGMy=m; [ -m; ;7 —.-m; =G =1,
We write tMI= (BY) with f=m; ;and y = (my, 25 sy ) -
Thereforeﬂz ~'YY=1 and |B| > 1 +We can write f=¢-ch(a) with
e=+1and @ € R .Moreover tYY=ﬂ2 -1 =sh2(a) .

If a # 0 put X=L, we have ‘XX =1
e-sh(a)



fa=0 ona 'M,=(50,0,0).

In all cases tMl =¢(ch(a), sh(a)X) avec'XX=1.

0 X
X (0]

exp( -aN) -Mis a matrix of Lorentz since M and exp( - N ) are of Lorentz (lemma I).
Let's estimate the first column K, of this product :

M, is the first column of e-exp( aN) with N =

ch( ) (sh(-a))X

(sh (-a))X Idm'/‘(ch(a) 1)XX - M,

K1=

'XX=1,ch’(a) - sh’(@) =1and

(Idm + (ch( @) -1)XX ) X=ch( @)X since (XX)X=X(XX)
We have : tKI = (8, 0,.,0 ) *The lemma 2 implies :

£ 0

0 2|

aN being a symmetric matrix , it is a diagonalizable matrix : &N = ‘PDP
with D a diagonal matrix and P an orthogonal matrix :

therefore exp(aN) =exp(‘PDP) ='Pexp(D)P and

exp(aN) is a definite positive matrix .

E 0 & 0

Moreover ; =Id .
0 Q|| 0 « fer

M=exp(aN) -

We have decompozed M into an product of a definite positive symmetric matrix and
an orthogonal one ,by the theorem of decomposition, there is uniqueness .

Note :

(1)If n=2then 2=+1 andif 2-€=1 then M is symmetric .
cos(6) -sin(6) cos(@) sin(@)

If n=3 then 2= or 2= withER, o €R.
sin(8) cos(6) sin(@) -cos(@)

If n=4 then Qis a spatial rotation if det(£2) =+ 1.
If not is a reflection, or a combination of a rotation and a reflection .
(2) Let's consider "wr= (ct', 0, 0, 0)with c a constant, t 'a real variable > 0 and let W=MW"'.

Let s assume that "W can be written in the form : "W = (ct, ctfp, c1f, ctﬂ3)
with 3, B,, B, real constants, t areal variable.



(8) 0
€ 1!
If M= 7_) thent=¢g-y -t"and €= |;‘;'| .
B C 0 Q

Now, we are going to explicit M in the case of the special relativity :

Lemma 3 :

Let M be a matrix of Lorentz withn =4, €=1 and let's consider "wr= (ct', 0,0,0)
with ¢ a constant, t '> 0 a real variable and let W=MW'.

Let 's assume that "W can be written in the form :

'w= (ct, ctf3, c1f, ctﬂ3) with B, By, B; real constants, t areal variable.

0 )¢
, with N = and @ ; the null matrix
n—

X Q@
n—1

Then if M=exp(aN) -

.then S, S
if we write = (,31,,32, ,33) and X="(X;, X5, X;)

we have exp( aN) = 7_) (%6) and then M= 7_) (773)9
B C B C
72 Y }/2
1+ (1_/_7):321 (1_/_7)161:62 (1_/_7),31,33
2 2 5
wi = Y /4
"e (1 + e T ey /fz (1 +7) "5
2
/4 Y
W BT

B =th(a) X and y=ch( a).
Proof :

1 0

First we can point out that W'=W'donc W=exp(aN)W'.

We have to solve :



- 1
eh( @) w@x ]| o] |4
sh (@)X (Idﬁ3+(ch(a) -I)X’X) o' 8 |

RN

1 ch( @) o
B sh (@)X,
This implies t s, =t o ()X, thereforet=ch( a)t' and
B, sh (o)X,
]| ch-( a) 7
B, sh (@)X, . N
ch( a) 5, = o (@)X, for t'#0 = ch( a)f=sh(a)X
B, sh ()X,

- -> ->2 2 -2
therefore B =th(a)X = B =th"(a) sinceX =1.
-2 1

W = dy= :
eput f=\ B andy 1 '—éz

=ch’(a)= =

As1 —th’(a) =

ch’( a)

Asch( @) =1 wehave y=ch( «);

As s (@) =ch’ (@) —1=¢ —1=

1
=Y
2
1-B 1-f
Let'ssumup y=ch( a), 72ﬂ2=sh2 (a), ﬂ2=th2(a) .
On the other hand :

PE 7 1= (1) =1) = LBty e a) -1

(1+7)
_ (BA) _ (PB) |
andX,Xj thz(a) = ﬂz therefore .
F (BB _ ¥

(ch( @) —1)XX,= 7

(1+7y) ﬁz (1+7) ﬂlﬂjy that implies:



2 2
Y Y
1+
IR
z }/z ﬂz
Id  +(ch( @) -1)XX= 1+
(z+y eI kL TETILE
72
e 1+
Y
2—)t—)
1+ YBB _
B (1+y)
sh (@) p,
Assh (o) X,=———— =ch( a)B.= 1B, finally we have
th(a) o
t, >
y (18)
ep(an)=| 7
W C
t, >\ | t, >
1 0 (18)
mensi=| 7 () AR Y 7w
B C B Ce
m;, ~my; ~m;,; -myy
1 Ty oy My, M3, My,
Corollary : AsM "=GMG= if M=(m ),
Tmy oz o my o My My
Ty oy My My, My y
4 t, >
- - Q'
M= 4 . (%6) ,M_IisofLorentz=>M_1= 7_) (}ﬂ)
Yo ac -3 2
(8)
> > B
then t.Q,B =f = BQ2=Pand M= 7_) »
B CQ

2
Note : If C.Q=[u1, Uy, u3]thenu21 +u22 +u23 =3 +7ﬂ2,

since ||¢||* = ||e4||>=-1fori=1,2,3 and ¥’ —i?, = |||’

Lemma 3 :

(1 +7)

(1+7)




If we consider ‘e,"= (0,1,0,0),%,'= (0,0,1,0),%,'= (0,0,0,1),

fi=Me,', f,=Me,', f;=Me;" and

P the application P : t(a, bcd) — t(b, ci)d) N N
then .Q=C_1[P(fl), P(f), P(f)] and B is an eigenvectorfor C:C =y 3.

(0 0 0]
t, >
100 (48)2
WehaveM.| "L s s g |ana ca=(pen) ps) ()
0 0 1
As Maplesoﬁ gives 7
2 2 2 N
+ + +y+1 ‘. 7 _
det( C$2) =det(C) = BT BT Bty SR L AR el S
1+y 1+y 1+y
we have 2=C'[P(£,), P(£), P(£;)]
Maplesofi gives
Y B+7 B +y+1 VBB VBB
y(y+1) y(r+1) y(r+1)
c! = ) Y B B Y BL+7V B +r+1 ) Y B, Bs =
y(r+1) y(r+1) y(r+1)
BB TBB YBi+7V Bty +1
r(y+1) r(y+1) y(y+1)
v-vB+1 BB,  vB,B,
1+y 1+y 1+y
2 > >
_ _YBIBZ Y_YB2+1 _YB2B3 —1d - vB B
1+y 1+vy 1+y B (1+7)
BB, YRR, Y-YBytI
1+y 1+y 1+y

be-cause;/zﬂg +7 B +7+1=7/2ﬂ2—7/2ﬂj +7-+1=;/2—1—;/2ﬂj +y+1

=7(1 +7—7ﬂj).

is a matrix of Lorentz :



- —
y 7B 0 y vBQ 1 0 .
. N = then:
N 0 -1 > 0 -1
y'ep 'ac Bllyp ca ”
Zt_) 2 —> Zt_)
-BY B+Y -CQyp+y po| |10 J
> > > 1o -1 an
lacyp+'ey B ey ppe-"aca ”

2 -2
y(1-5)=1;
AN - > e
tozﬂﬂQ—tQCZ.Q:Im:tg(yzﬂﬂt-cz )Q=_1R3:,C2 =1, +72ﬂﬂsincet!2!2
=1

B’
>

t t . 27 4 4
QCyB=Ry p=CB=yp.

Note :
For the rest, we recall that the change of basis matrix M has its columns equal
to the expression of the basis vectors
of the new base expressed in the old basis.
Corollary :

(0)If Mis of Lorentz we have M symmetric < .Q=Idﬁ3.

With the uniqueness of the decomposition we have

t, >
M= 4 <%6) ! ’ =MId_,.
- 0 R
7 C
(1)If M=M'"M"is a product of two matrices de Lorentz with
t, > { — PN
[ T D =2 R I (7B) | | 7 (78"
B co yp c' B c
> > —> —
7"7’"(,3',3"7‘1) Yv'B" +ypc” > >
then M= o :"}’:7"7"(,3',6"+1>’
}/V}/Vfﬂf +}/VVCVﬂVV V}/ﬂﬂf ﬂ" +C7C"
YTy T 2750
B= V'BH’:C'B c=1d_ +YLP i -y yppr +crcn).
(2)

If we haveQ=IdmandP(fI)//P(e1) ,P(fz)//P(eZ),P(jg)//P(e3) then B; B;=0 fori #j

9
< Bis paralleltoan e; i=1,2, 3 .



A0 0

.{2=Idm =C=[P(fi), P(f), P(f5)]=| 0 K1 0
0 0 v
since P(f;) /P(e;) » P(f;)7/P(e;), P(f;) 7/P(¢3) .
-
= Cis diagonal <= B; ;=0 fori #j < Bis paralleltoane; i=1,2,3 .

(3)If we have P(f;)/P(e;), P(f,) /P(ey), P(f;) /P (e;) and

+1 0 0
%
B is parallel to an e;i=1,2,3 then Q= 0 +1 0
0 0 +1

%
B is parallelto an e; = C is a diagonal matrix

P(fl) //P(el), P(fz) //P(ez), P(jg) //P(e3) = CQis also a diagonal matrix

1 0 0
= Qis diagonal = 2= 0 £1 0 |since&2isorthogonal.
0 0 £1

(4) Let M be a matrix of Lorentz such €=1 and P( f;) =/1’.P(ei) withA; >0 fori=1,2,3,
then Q=1d .
R3

1 0

%
Let us consider Q = with @a rotation de 3 such as PQ(eI) =uf,u>0.

[0}
%
Since P(j:) =/11.P(el.) with /11. >0 fori=1,2,3 and B common to both basis B and B’
%
PQ(e"))=pu'B, u'>0.

We can consider now :

M
B — B
o/ ' JO with M ' a change of basis matrix of Lorentz.
B — B,
1
t, >
. ~ o~ |10 y ()
If we write M = AL with 2= and A= R
1w C

M ="0MQ ='0400 = ('040) ("020)

(9%

since M' and (tQAQ) are symmetric and 0020 orthogonal then .Q=Idﬁ3 by uniqueness .
Corollary :
Let M be a change of basis matrix of Lorentz such €=1 associated to 2 observers O and O':

RB= (¢) — B= (e '.) «Let's consider another basis B = ( f '.) associatedto O':
Yi=0,3 Yi=0,3 1 i=0,3



B'and .6’1 being associated to the same observer , the change of basis matrix

1 0

. . _ Lt _ "N o
is an orthogonal matrix Q = with a)a)—IdR3 , .6’1 chosen as P(j: ) = Z,I.P(ei)

a
with /11. >0 fori=1, 2,3 and P the application P : t(a, bcd) — t(b, ¢d):
Let's M' the matrix of Lorentz from B to .6’1 :

2 M 5
M'N 0
74
1
t, >
. /4 (?73 10 ot
then MX '=M 'QX' with M ' = and Q = with ww=Id .
B C @ o




A special case :

Lemma 4 :

Let's assume that,_é =t(,31, 0, 0)with,31 >0 -We put 6;.,j=1 if i=jelse 6;.’j=0.
Let's consider e; = ((5;,]) ,j=0,.., 3and Me; fori=0,.. 3.

Let's pur I'( X,, X1, X, X3 )1="(X}, X,, X5 ).

We assume that [Mei] = ﬁi[ei] with /11. >0fori=1,.,3 (1),

we have :
y W, 00
A= w, v 00
0 0 1 0
0 0 0 1
Proof :
2 272 2
Us 14— z=<1+7)+7ﬁ>=1+7+7—1=},
1
(1 +y) (1 +y) (1 +7)
-2 2
%
since }/2 —1= 1_)2 —1= '6_)2 =72,3 we can write
1-p 1-p
}/ 7ﬁ1 0 0- 8 0 0 0
0 o 1) 1)
e 0 0 0 22 723 24
M=exp(aN) - | P
0 @ 0 0 10| 7 %2 % 9y
0 0 0 1 0a)4’2a)43a)44
B, , , B, W, ; B, w, 4
v, , 70, ; 70, ,
Me,= yMe,= and M e; =
w; , W, 3 @, 4
@, , @, ; @, 4
e 0 0 0
e 0 0 wz,z 0 0
then, by (1) : =
0 0 0 0 a)3’3 0
0 0 0 o,




}/}ﬂloo 6000
0 0 0

as'Q@=1d_, M~ w7 with =1 1.

00 ¢ 0

0 0 01 0 0 0 g

As A, > 0 andy > 0 then &=1 .
We can check'™MGM = G and [Mei] = ?»l.[ei] with }”i >0 fori=1I,..., 3.

In the case where €=1 and [Mei] =?»l.[ei] with /1’. >0fori=1,.., 3,
B, =0, wehave:

y 1w, 00
A= w7 00
0 0 1 0
0 0 01
Another case :
Lemma 5 :
Let M be a matrix of Lorentz such €=1 and [Mei]=/1i[ei] withA; >0 fori=1,2, 3,
t, >
> y (B) |
for any B we have .Q=Idﬁ3 and M = N with
W C
72 ﬂz /4 72
1+ B.p B
(1+y)" 1 (1+y) "2 (1+y) "7
72 72 ﬂ? 72
= Bp, 1+ —— - Bp
(1+y) 77" (1+y) "7 (1+y) 77
72 72 /4 ﬂz
——p B 1+
Gen™ G T e
Proof :
1 0

Let's consider P = = /?el withA > 0

such t.QQ =Ild and P
B

™Y



0 >
and P| > |=A'", since Biscommonto both Oand O’

and [Me1]=/11[e1] with 2,1 > 0.
We can consider now :
2 M gz
P/ /P
4
2 M, 5
1
With the basis .6’1 = (Pe0 =e,, Pe,, Pe, , Pe; )
and B' ;= (Pe'o =e'y, Pe'y, Pe',, Pe'; )Mis represented by M=PM'P.
We have M'Pe;= PM 'PPe;= PM ¢;= A.Pe; fori=1,2,3.

. 1 0 1 0 1 0
PGP= ) =G therefore
-1
0 2 0 L 0 Q
M'"is of Lorentz.
! 1 I 1
5, A
If W=ct y PW=ct| > [=ct| , |=ct and then
162 ,Qﬂ ﬂz 0
,63 Ji 0
- i i i i
B'= ( "0, 0)with,31 =0.
y W, 00
' 0 0
The lemma 4 shows that M'= w7
0 0 10
0 0 0
‘W)l A [1 0
%
If A( y/j ) = 7_) and 2 = are the factors
7 C

of the polar decomposition of M (lemma 3),
t t P to«( 7 !
w=emp="P(4(g)2)P=("PA(B)P)( P&)P) .
%
M'is symmetric, tPA( p )P is symmetric and ‘PQP is orthogonal since

t, A A A
(*par)('Papr) =Idg, *For short M'=M"- Id = (’PA(,_é)P)( 'PQP).
A
As the decomposition is unique ‘PQP =ld,, (and M'= (tPA(,_B)>P) ) .

A
and then 2 =1Id 4
R






Eigenvalues and eigenvectors when £2 =IdR3 .

Lemma 4 :

With the lemma 1 notations :

0 x; x, x;
X
xl 0 0 0 -> -> >
N= avecX=| X, |et XX=1.
x, 0 0 0
X3
x; 0 0 0

As_ the e_ig?nvalu_es of N are {1,-1, 0, 0} and the eigenvectors are :

1 -1 0 0
X, X, -X, -X;
[ x x, [| 0
X3 X3 0 X7

If we consider B the basis made of thes eigenvectors and the diagonal matrix

- > >
made of the eigenvalues of N : N=BDB I'.Don t forget that xi +x§ +x§ =XX=1.

0 |11
x5 ||y
0 0
x; || 0
X7

SD]~S S

X,

SD]~S S

0 0
"Xy X3
X, 0

1 -1 0
X X X%
X, X Xy
X; X3 0
0
X
X3

Let's consider now

thus :

exp(aN) =

0
0
0

-1 0
X X
X X

0
0
0

2 2 2 2 2 2 2 2 2
X7 +x2 +x3 X7 +x2 +x3 X7 +x2 +x3

0
0
0

11

exp(aN), as exp(oN) =exp(BaDB ™) = Bexp(aD)B ' and




However y=ch( &) ©a=ln(7+w/ }/2—1) =e¥=y+ 72—1,

asy —1=Fy = *=y(1+p) =

Pi-p) = | o vin p=[B B

-0 _
e =

(1 +p)

We assume that  # 0 ifnot exp(aN) =1d .
%

As coth( @)
We assume that f # 0

=ﬂ_1and;(=coth( a)p:

1 -1 0 0
glp g8 BB, -,6'1-,33 7'(10+,3)
N g g, B0 0
glp, '8 o gl |l !
L1
1 -1 0 0

g'p, BB BB, BB
g, BB, BB 0

-1

g, BB, 0 5B
) VB, VB B, B, 5
B +B,+8, B+B+B, B +B+5,
ﬂ77ﬁ+é+é BB, (»-1) BB, (rI)
| BB BB B Bt
ﬂ y 162161(7'1) 7)6; +ﬂj +ﬂ; 162163(7'1)
B +B+B, B +B+B  B+B+F,
5 BB, (v1) BB, (r1) 1B +B+P,
DT BB B BB, Bl

= L+p and
Ju+pya-p V 1-F

0 0

y-(1-B) 0 0
0 10
0 1




4 7ﬂ1 7ﬂ2 7ﬂ1
yB, 1+ ﬁi(}’—l) BB (y—1) BB (y—1)
1 ﬂz ﬂz ﬂZ
- B '62:61(7_1) +ﬂ;(7—1) ﬂ2ﬂ3(7_1)
2 ﬂz ﬂz ﬂz
v BB (r=1) BB (r—1) +ﬂ;(7—1)
3 ﬁz ﬁz ﬁz
/4 B, v-B, yB,
rp AW R S A
! (1+y) 170 (1+y) T2 (1+y) 173
= 2 5 ,
- Y B - /4 n. ¥ T
7ﬂ2 (1 _/_7) ﬂz ﬂl (1 _/_7) ﬂz 162 (1 +7) ﬂz ﬂ3
2 2 p
- ' Y . y
becausel/((] +(wz) =M
g
Wecanveriﬁ/:
4 }’-,31 7.'32 }",33
72 72 },2
P ey Pl ey P ey PP
2 2 5
- Y .- /4 e ¥ .
7ﬂ2 (1 _/_7) :62 ﬂl + (1 +7) ﬂz ﬂz (1 +7) ﬂz ﬂ3
2 2 5
7y (117) Pib (117) by 14 (117) Pibs |

BB

| BB,

BB




v(B,+8,+8,+B)
/ 1
B, (1+(8+8,+8,+B) 7 +(B+1)7) ,
16 '161
(1+9F =y(1+B)| -1 because
b1+ (B +B+6+8) 7 +(B+1)7) B8,
(1+7 B BB,
B, (1+(8+8,+8,+B) 7 +(B+1)7) ’ ’
(1+7) B
1+(B+B,+8,+B) 7 +(B+1) y=1+F-(1+ )y +(B+1)y
=1+ (B+1)y(1+y). ,
B BB, +B) 7 +(B+1)y)  BU+(B+1) y(i+7))

(1+y)pB

+7) +7 —1+7)

however

e y(1+8) B (1+y) =1 +p(y

because Y =y —1 et B( Bly+7) +7 +7) =By +7) (1 +B) =1 +7) (1 +p) .

In the same way :

/4 7B, 7B, v B
72 72 72
T G PP Gy PR ey PR
2 2 2
. Yy 5. Yy 5. Yy 5.
e ey BT Gy B ey BB
2 2 2
_ Y 4. Yy __ a. Yy 5. -
ey B ey B T ey B

ﬂ_ -ﬂl
. ﬂ_ 'ﬂz
ﬂ_ 'ﬂ3




7(-B, =5~ F,+8B)
/ 1
(-1+(-B-B-B+B)7 +(B-1)7)B, y
16 '161
Hrns 1P|
(1+(-B-B,-B+B) 7 +(B-1)7) 5 pb,
(1+7)8 BB,
(1 (-B-B-B+B)7 +(B-1)7)B, ’ ’
_ (1+7)8 _
We can point out that the 2 first eigenvectors are light vectors .
/4 7B, 7B, v B
72 72 72
T R e RV R T R
2 2 2
. 4. 4. 4.
e e PP ey PR ey BB
2 2 2
_ Ay Y 5. Y s |
N R N R > R
0
| B
BB,
L 0 _
/4 7B, 7B, v B
72 72 72
P ey PP e P ey P
2 2 2
. 4. Ay y _
P e PP T G B e B
2 2 2
. 4. 4. Y 4.
ey B ey B T ey B

-ﬂ_ 'ﬂz

ﬂ_ -'BI




For short the eigenvalues are {y(1 + B), y(1-pB), 1, 1} and

! T e 0
Blp || BB || g || 7,
the eingeinvectors -1 , -1 P ,

16 '162 16 '162 ﬂ -'BI 0

glp | |68 || o || FA

Eigenvalues of a product of 2 symmetric matrices :

If A and B are real symmetric matrices such that the eigenvalues of A are strictly positive
and those of B positive then the product AB is also K — diagonalizable

(We remind that if A is symmetric with positive eigenvalue then there exists

1 1 1
a single matrice symmetric with eigenvalues positive A % suchas (A 2 .47 ) =A)
Proof :
1 1IN 1 1 1
) _ 2| 2 2
We can write AB =A (A B A )A

2 thus AB and A° B A? have the same eigenvalues
fro1 1 1 1 1 1
However (A ’pa? ) = (A ’pa’ ) thus (A ’pa? )is symmetric therefore [R-diagonalizable .

> >
Note : If 2 # IdR3M may have no real eigenvalues for example B = 0 and £2being a rotation .



(5)Space — time vectors properties :

In a Minkowski space, the quadratic form associated with this space

makes it possible to classify the vectors into 3 categories that we are going to study.
Vectors in_a Minkowski — space

(J-M. Souriau."Calcul Linéaire " - PUF 1964 .)
We consider the vector space [* of 4 dimensions with the quadratic form of Lorentz :

4
DX) =x12 - Z;,iz where °X = (xl youes x4) , whose matrix is :
i=2
1 ‘0
G= 0 'IdR; where 0 is the null column of & .

We give R4 a @-orthonormal basis .

We want to describe the sets of vectors [ defined according to the sign of @ (X ).

We distinguish 3 subsets :

E_ ={X€ER/DPX) >0} U{0}:timevectors,
E_= {X e I\?4/¢(X) < 0} U {0} : space vectors,
E,= {X € R4/ ®D(X) =0} : isotropic vectors .

Whether or not to add {0} to E , and to E _varies according to different authors.

We notice that the nature of vectors is independent of the chosen basis of K @ - orthonormed .
If we note P the matrix of passage from the basis B to the basis B',

if P is a matrix of Lorentz; 'PGP=G,X=PX', Y=PY"' then

X 6x=(X"P)G(PX") =X'('PGP) X=X 'GX".

Lemma 1 :

We consider the vector space R? of 4 dimensions with the quadratic form of Lorentz.
In ¥ there is a 3 — dimensional subspace of space vectors .

Proof:

Consider for example : {X e R4/x1 = 0}.

Lemma 2 :

We consider the vector space R* with the quadratic form of Lorentz.
There are no time vectors subspace of dimension > = 2.
Proof:
Because otherwise there exists a subspace F of dimension at least equal to 2 of time vectors .
As there exists a subspace G of space vectors of dimension 3 and as F1 G = {0} and
therefore dim(R*) > 5 .
Lemma 3 :
We consider the vector space with the quadratic form of Lorentz.
Let 2 vectors of R* Xand Y # {0} such that XGX >0,"YGY > 0and 'XGY=0
then X and Y are collinear and isotropic.
Proof
We consider X and Y 2 non - zero time vectors.
If they are independent they generate a subspace of dimension 2 of positive vectors :

If Z=2X + u¥ then'ZGZ ="(AX + 1¥) G(AX +u¥) =1"'XGX +4'YGY > 0.
It is impossible therefore : 9 A # 0 € Rsuch that



1

X =AY and then :0="XGY=AY GY= p X GX.

Lemma 4 :

(1) Any non — zero vector X orthogonal to a non - zero time vector Y (’XGY=0) isa space vector.
(2) 2 non — zero isotropic independent vectors X and Y are never orthogonal.
Proof:

(1)If Xwas a non — zero time vector : XGX > 0 and Y such that 'XGX > 0 then'YGY < 0

because otherwise 'YGY > 0 and as XGX > 0 and XGY=0, according to lemma 3 X would be
isotropic, which is contradictory.

(2) Because otherwise 0 ="XGY="XGX = "YGY according to lemma 5 X and Y are linearly dependent.
Definition : For any time vector( XGXx > 0)we set || X || g= XGX .

Lemma 5 :
Let @ be a bilinear symmetrical nondegenerate form on a vector space E of dimension n,
then for any base ﬁ’( e, ..., e, ) if we consider the matrix representing @ in B

0= ((p(el., ¢ ) ) then the determinant of Q is of the sign of (-1)" ~?
where p is the positive index of inertia of .

Proof:
There exists a base .6"( ey, ..., e, ) where the matrix representing ¢ is the form :
ldg, 0 .
0'= ,then det(Q') =(-1) :
0 ldg,

Let S be the matrix of passage from the basis B' to the basis B we have
det(Q) =det('SQ'S) =det(Q’) (det(S) )y = sign(det(Q)) =(-1)" ~P.

Lemma 6 : Cauchy — Schwartz's counter inequality .
We have| XGY | = || X || IVl for any time or isotropic vectors.
Proof:
Let us consider the matrix S made up of the 2 columns X € R*and Y e R?: 8= [X, Y]

We assume that X and Y arenon — zero time vectors because if one of them is isotropic
or zero the ‘inequality is obvious.

t
We have 'SGS = G[X, Y]=
y YGx  'YGY
t _ 2 2 t 2
and det( 'SGS) = | X || ;1 Y] — (XGY)".

If det( 'SGS) =0 the lemma is proved .
If det( 'SGS) #0andif X=AY, A € R*,
, Y6y  A'YGy
then det( 'SGS) = =0
A'YGY  'YGY
It's impossible therefore X and Y are non coplanar : X and Y form a base S = [X, Y]
of a vector subspace F of R4 of dimension 2.

XGX XGY



) XGx 'xGv | , B _
As SGS = , SGS definesa form, bilinear and symmetrical ¥
YGx  'YGy
on F by ¥(u,v) ="U'SGSV with u=SU and v=SV .
Let ¢ be thebilinear form defined’ on R* whose matrix is G.
We immediately check that ¢ r is also a bilinear symmetrical form on F.

Let us show that ¢ r is regular, thatis :

F1= u EF/¢, (mv)=0,Vy EF)= {0).

S, being a basis of F, is a bijective application of i€ on F.

If G is the representation of ¢ R4, 'SGS is the representation of @ F inF
provided witﬁz/ the basQS' sletuandv 2 vectors of F;

we have if U and V the representations of u and v in F*
UandVin F with the baseSand U =SU, V =8V :

1 ~ ~

o) =9 (mv)= UGV ="U'SGSV.

Soletuu EFL and v EF, u=8SU and v =8V with Uand V element of* R?
We have (p/F(u, V) ='"VISGSU=0 VV € 2 and thereforetSGSU=0

as det (SGS) # 0 we have U=0.
? is indeed a bilinear symmetric regular form on F.

The lemma 5 applies : sign(det( tSGS) ) = ( -1)2 “P | p the inertia index ofqo/F

but F being of dimension 2, according to the lemma 2 there is no subspace of dimension >
= 2 of time vectors
and F contains X, time vector.

? i being a bilinear symmetrical regular form on F, ¢ pcan be represented
inaq e orthogonal basis by a diagonal matrix composed’ of 1, -1 and 0.

The nature of the vectors remaining unchanged, the only possibility is therefore 1 and - 1.
So the only possibility forpisp=1.
2
Therefore sign(det ('SGS) ) =-1 et doncXI| AW < ('XGY)~.
Note;
We recall that the set of time vectors do not form a vector subspace
take for example; X="(4,1, 1, 1) et Y="(-4, 1, 1, 1) etX +Y="(0,2,2,2) .

Lemme 7 .
Let X, Yand Z 3 time or isotrope -vectors we then have :

(xaGY) ('YGZ) (zéx) > (xGx) ('vGY) ('zGZz)

Proof:
Let's consider S= X, Y, Z], we have :



7XI YI ZI 7
)¢ X X, X5 X,
1 0 X, Y, Z,
'SGS=| 'y XY, Zz|=|Y, -Y, -¥; -1;
0 -Idm X, Y; Z
tZ ZI -ZZ -Z3 -Z4
X4 Y3 Z4

XGX 'XGY 'XGZ
=| 'YGX 'YGY 'YGz

'7GX 'ZGY 'zGz
and det( 'SGS) = 'XGX['YGY-'ZGZ —'YGZ-'ZGY]

-XGY['YGX-'ZGZ - 'YGZ-'ZGX |

+'XGZ'YGX-"'ZGY —"'YGY-"ZGX |

='XGX-'YGY-'ZGZ -'’XGX-'YGZ-'ZGY
-XGY'YGX-'ZGZ +'XGY-'YGZ-'ZGX
+'XGZ'YGX-'ZGY —'XGZ-'YGY-"ZGX
='XGX-'YGY-'2GZ - 'XGX('YGZ) 2

-'YGy- (tXGZ)Z —'7GZ ('XGY) iy IXGY-'YGZ-'ZGX ;

But |’xGY| >V 'x6xyyGy, |'vez| > 'vevy z6z, |'z6x| > z6z 'xG6x ,

then :

-X6x('vGZz) 7 ygy. (XGZz) ? 76z (’XGY) ?
<-XGX-'YGY-'ZGZ -'YGY-'ZGZ- 'XGX —'ZGZ- 'XGX-'YGY
=-3XGX-'YGY-'ZGZ ,

and then det( 'SGS) <-2-XGX-'YGY-'ZGZ +2'XGY-'YGZ-'ZGX.
Considering the sign of det( 'SGS) -

If det( 'SGS) =0 the lemma is proved .

Ifdet( 'SGS) #0 andif X=AY +uZ, A € R*, u € R*,

XGx X6y xGz
we have det( 'SGS) =det| 'YGX 'YGY 'YGZ |=0because (XY + 1/ Z)GX=AYGX + 1fZGX
7Gx 26y 'zGz

it's impossible therefore X, Y et Z are non — collinear and form the basis of a vector subspace F
of R* of dimension 3.

XGX XGY 'XGZ
As 'SGS=| 'YGX 'YGY 'YGZ |,'SGSisa bilinear symetrical form on F.

~

‘7Gx 'zGY 'zGz
By making a similar reasoning to that of the previous lemma we find that
sign(det('SGS) ) = ( -1)3 1y,
Therefore det( 'SGS) > 0 and the lemmais proved.
Lemma 8 :



1 0
We consider 4 provided with the quadratic form defined by G = 0 1d ,

then the union of non — zero time vectors and the isotropic vectors are divided
into 2 opposite classes GI and Gz and if X and Y are non -zero time vectors we have :

XGY >0 < Xand Y belong to the same class
XGY<0 < XandY belong to opposite classes .

Two vectors X and Y belonging to a same class check XGY > 0 unless they are isotropic and parallel
In this case they belong to the same class if their ratio is a strictly positive number.

Proof:
Let X0 be an arbitrary non — zero time vector. A non — zero time vector Y is never orthogonal to X0

because otherwise by lemma 4, Y would be a space vector s0'Y' GX, > 0 or 'y GX, <0.
We say thatY € GI in the first case otherwise Y € 62 . The classes are opposite :

ifY e 61 then-Y € 62 «The lemma 7 shows that :

(thGY) (tYGZ) (tZGXo) > (tXaGXo) (tYGY) (tZGZ) =0, VY, VZ timevectors .
If Yand Z belong

- to the same class €1 : tX0GY2 0 et tZGX0 >0=>"Y6Z> 0,

- to the same class Gz : tXaGY_<0 et tZGXa <0='YGZ>0

— to different classes : thGY_< 0 et tZGXa >0="YGZ<0 or
'X,GY > 0et'ZGX, <0 ="YGZ <0 .

Conversely : If 'YGZ > 0
either thGYz 0 and tZGXo = 0 = Y and Z belong to the same class @1 ,

or thGY_< 0 and tZGXo < 0 = Yand Z belong to the same class Gz

in the same way if 'YGZ<0 =YetZ belong to different classes .
The last part of the lemma is a direct consequence of lemma 3.
Note : In an arbitrary way the elements of one of the 2 classes are called
vectors of future, the elements of the other vectors of” past.

Lemme 9 :
Soient X et Y 2 vecteurs de temps ou isotropes .
Si X et Y appartiennent a la méme classe , leur somme est encore un vecteur de la méme classe ,

et ils vérifient la contre — inégalité triangulaire si on note || X|| 5=+ XX si'XX>0:
IX £ Yl g2 Xl + 11 ¥l .

Proof:
From the lemma 8 'XGY > 0 and from the lemma 6 |'XGY| > || X || JIV; and then

XGY = |X||;IIY)l;, therefore :
t
IX+YIS=(X+NGX+Y))=IXIS + 1Yl +2XGY

2 2 2
2UXIG +IYIG ++2 1Y GIXI = (IX1Ig+ 1X1g) -
If Vis a vector taken in the same class of X etY , we have :



XGV > 0and 'YGV >0 = t(X + Y)GV = 0 and X + Y belons to the class of V
therefore to the class of X and Y.
Note :

nif X and Y are 2 vectors of class different the sum can be of any kind :

IfX (2,1,1,1),'’XGX=1and Y="(-3,1,1, 1), 'YGY=6,then 'XGY=-3 ,
X +¥= (-1,2,2,2), (X +¥)G(X +Y) )=-11 (space vector) .
IFX="4,1,1,1),'XGX=13and Y="( -1, 0, 0, 0) , 'YGY = 1,then 'XGY=-4 ,
X+Y="3,1,1,1), (X + VIGX +¥) )=6 (time vector).

IX="3111),'XGX= 6andY( J_ J_ J_ 1],’YGY=£,

3 3
o e xer={ AT Cj
t(X +Y)G(X +Y) )= 0(isotropic vector ).

(2) The triangular counter inequality gives a geometric explanation of the twin — paradox .




(6) Classification of Lorentz matrices.
We have seen that the set of Lorentz matrices Lo of order n forms a subgroup of GL ,( ),

the group of invertible matrices . We can write a Lorentz matrix M in the most general writing :

e 0 0 X 3
M =exp(aN) where o € R, N= XER
0 Q X 0
1 0
As '"MGM =G avec G = 0 cdet(M) =+1.

-1d
B

But det(exp(aN)) =™ =’ =1 therefore
£ 0
det(M) =det =g-det( ) .
0o 0
(2) Determination of €
Let V,be anon — zero time vector tVoGVo > 0 and M a Lorentz matrix. We have :
t(MVo) G(MVo) =tV0 (tMGM) Vy =tV0GV0 > 0soMV,is also a time vector.
Let n=sign (tVoG(MV0) ) si =1,V and (MV0) belong to the same class otherwise n=-1,
V and (MV 0) belong to different classes .
Now let V be another non — zero time vector. As previously MV is also a time vector.
As (MV) G(MVo) =y ("MGM) V,= tVGVo, we have the equivalence :
Class(V) = Class( V0) < Class(MV) = Class(MVo).
So n depends only on M and is independent of V.
Let us calculate 11 for the vector E, = t(l, 0,00):

= Y€ therefore M=E€.

Y
a
S
Q
S S S~

If €=1 we will say that M is orthochronous otherwise if € = - 1, we will say that M is antichronous.
As det(M) = g-det( £2) we have

dettM) =+1 <> e=+1 and det(2) =+ 1 ore=-1and det( Q) =-1 .

And if dettM) =-1 < £=-1 etdet(2) =+ 1o0re=+1 and det( Q) =-1.

Let be the following subsets of Lo :

Roo={M/e=+1 etdet( ) =+ 1}, the orthochronous rotation group,

Roois a group called the restricted Lorentz groupsincefor 2 matrices of Roo :
MetM', we have :

det(MM'™") =det(M)det ' (M') = £-det( 2) &' -det( 2') =+1 .
Roa={M/e=-1 etdet(£2) =+ 1}, the antichronous rotations ,
Reo={M/e=+1 etdet(2) =-1}, the orthochronous inversions ,
Rea={M/e=—1 etdet(£2) =-1}, the antichronous inversions

We note RooU Roz={M/det(2) =+1}isa group, the rotation group ,



and RooU Reo={M/ =+ 1}, the orthochronous group,
and RooU Rea={M/e=+1and det(2) =+ 1 ore=— 1 and det( £2) =-1}, the pair group.

-> ->
We can also consider the set of matrices of Lorentz such as < =IdR?’ e=+1land f= ,Bxi :

y W, 00
0
Therefore M=| 1B, Yy 0 0 | withT= 0
T Idﬁz

It is easy to check that this set is a g?oup of composition : the special group or boost :
We also note that :

y B, 00 || ¥ yp. 00 | |1+8p. B+ 00
MM=\ 1B,y 00 || YR ¥ 00 =y | BB I+BE. 00
T I, T lg | T 1d,,

We notice that this group is commutative .







	
	
	
	
	
	
	



