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Abstract :
We give an axiomatic way to present the special relativity .
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1 Context
 This text is a  enhanced partial translation of  :
 https :// archive,org/ details/ matricesdelorentz/mode/ 2 up
 
 
2 Basic principles : 

 a   We consider a point or observer  O, in an affine space E, which models

  our physical spatial space, of direction E, vector space in 3Kdimensional Euclidean 

 isomorphic  to = 3 ,We associate O with an orthogonal coordinate system  R O, x , y , z  

 with a base B O, i , j , k  with its natural Euclidean structure. 
We provide O with a clock which measures time t.
 We suppose that  at each point, fixed with respect to O, of the coordinate system  R
 is associated  with a clock synchronized  with that of  O which measures the  same time t .
 Synchronizing Clocks allows to have a variable t independent.
 We  assume  that  R  is  Galilean that  is  to say   if  a  moving  point , left  to itself, 
 on  which  acts  no force, continues  its  trajectory  in  straight  line, 
 at one   uniform speed ,This hypothesis  implies the existence of  one only time,
 except for a change of origin  or  a change of unit.
 We can thus construct a vector space with 4 dimensions and 
 a frame R Ot = 0 , t , x , y , z , Ot = 0 representing  the point O at time t = 0 in this space, 

 associated with a base  B Ot = 0  , ct  , i , j , k  orthonormal for the bilinear symmetric form

  form , f t , x , y , z = c2t 2Kx 2Ky 2Kz 2 c being the speed of` light)  . 

b   We consider another point or observer  O ' having a uniform speed   V relative to O 
and measured by O with which is also associated an orthorormal coordinate system R' O', x' , y' , z'

 associated with a base B' O', i', j', k'  with its natural Euclidean structure.We provide O 
with a clock which measures time t.
 We suppose that  at each point, fixed with respect to O', of the coordinate system  R'
 is associated  with a clock synchronized  with that of  O' which measures the  same time t' .
 Synchronizing Clocks allows to have a variable t' independent.
 We  assume  that  R'  is  Galilean.
Also we can thus construct a vector space with 4 dimensions and 
 a frame R ' O't = 0 , t' , x' , y' , z' , O't'= 0 representing  the point O' at time t' = 0 in this space, 

 associated with a base B O't'= 0  , ct' , i', j', k'  orthonormal for the bilinear symmetric form

  form , f' t' , x ' , y' , z' = c2t' 2Kx' 2Ky' 2Kz' 2 c being the speed of` light)  . 
 
We will assume that the 2 observers pass through the same point of  E during their journey 



and at this time ,
O and O ' set their clock to 0 We will assume that the 2 observers pass through the same point of  E 
 during their journey and at this time, O and O 'set their clock to 0 t = t' = 0 . 

This nonessential  hypothesis simplifies the calculations and we will talk about the bases  B O  , ct  , i ,

j , k  

and   B ' O  , ct' , i', j', k'    by setting O = Ot = 0 = O't'= 0 . 

Otherwise we can consider a third observer O'', having the same uniform speed .

V relative  to O , but whose trajectory, a straight line parallel to that of  O', intersects that of  O.  
The spatioKtemporal units being defined  by the physical laws which we will suppose 
to be the same in the 2 frames , we will choose the same units in the 2 frames. 

g  We assume that the photons move in a straight line at speed c, independently 
of the considered reference frame. We also assume that c is the maximum possible speed. 
This implies that for a photon emitted from O at time t = 0, that is to say also from O' at time t' = 0 ,
 its coordinates in B and B '  will check simultaneously :

 c2t 2Kx 2Ky 2Kz 2 = 0 5 c2t' 2Kx' 2Ky' 2Kz' 2 = 0 conservation of the cone of` light .  
 

3  Relative  velocity of  2 frames :
In classical mechanics, if we consider 2 observers O and O'  in uniform relative 

 motion to the other we can write that  VO' O = KVO O' for these 2 observers :

the time is absolute as well as the distance  OO'  . 
In special relativity , the laws of physics are the same in the 2 frames in uniform relative 
motion to the other  , that is to say that same objects  placed under the same conditions 
will produce the same effects :
Measuring velocity  of  O' relative  to O and measuring the velocity of  O relative to O' 
will give the same result as long as these 2 velocities have the same norm  . 
As the 2  measured times  t and t' are different likewise for spatial coordinates,
 Now  remembering that at this stage of the study , we only know that the transformation 
 is linear and that the velocity of  light is invariant, we will justify in an elementary  way 
 that the relative velocity  of  the 2  frames  in uniform translation has the same norm,
 measured in one or the other frame and vectorially  opposite.  
Let be  two spatial frames  R and  R '  in uniform translation. Let  assume  that 
their origins O and O' coincide only once at during their relative movement 
at a point in the  spatial space and at this point the clocks of the two spatial frames 
are set to 0 : t = t' = 0. 
We  recall that  the time  associated with  any fixed  point  by  relation  to  O  in  R 
 is synchronized with O .
Similarly  for  the  time associated with any  fixed  point  by  relation to O' in R ' 
is synchronized with O' .
We can thus define the uniform velocity of a point P t  with respect to O in R by:

    VP O R
 =

OP t1 KOP t0

t1Kt0
. Similarly in R' .

Knowing that OO ' 0  = 0,  we have in R :

 VO' O R
=

OO' t

t
=K

O'O t

t
=K VO O' R      ,

 Similarly in  R ' knowing that  O'O 0 = 0 : 



 VO O'
R '

=
O'O t'

t'
=K

OO' t'
t'

=K VO' O R'     .

Is true that  :  VO' O R
=K  VO O' R'

  ?

 We already know that these 2 velocities  are parallel to OO ', constant and in opposite directions.

 Let us evaluate their respective norm Let V be the vvelocity of O 'relative to O in R. 

 How to measure V  ? For this we are going to carry out a simple experiment 
measured from O and O'. We will note   R

4
 and  R

4
'   the frames in the space in 4 dimensions, 

 associated with R and R ' and at their respective clock  .
 As the transformation which makes it possible to pass from R

4
  to R

4
'  is linear , it can be represented

by a matrix M, R
4
  and R

4
 being provided with adequate orthonormal bases B  and B ' .

 Experiment : 
At time t = t '= 0, O and O' coincide. 
 At time  t = t0 O 0  we send a light ray from O to O' which returns it to O at time t = t1` `,

 and reaches O at time t = t2` `. 

We denote by O' t  and O t  the position of  O' and O at time t in R. 

We assume that the axis Ox is parallel to OO' :
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 As the movement is uniform rectilinear along the  line defined by O and  V :

we therefore have  OO' t0 = V .t0 , similarly  O' t0 O' t1 = V . t1K t0 . 

The duration being the same  on the outward and return journey t1 = t0C
t2K t0

2
=   

t2C t0
2

.

If c is the speed of the light : 

 t2K t0 c = 2 V  t0C 2 V t1K t0  

 therefore : t2K t0 c = 2 V  t1 and therefore : V =
t2K t0
 2 t1

c =
t2K t0
t2C t0

c .

 From the observer's point of view on O ', he sees a ray starting from O at time t ' = t0',

  and O'O t0' = V ' .t0' ,.

the ray will arrive at time  t1' , then it will depart towards O which it will touch at time t2' .

The ray will therefore have traveled the distance c t2'K t0' .

 In the direction OO' the distance traveled is :  O'O t0' = V ' .t0' and in the return direction :

V ' .t0'C V ' . t1'Kt0' C V' . t2'Kt1' = V '  t2' and therefore :



t2'Kt0' c = V'  t1' C V'  t2'  and  V '  =
t2'Kt '0
t2'C t0'

c .

 Let M = mi, j   be the transformation matrix from R
4
 ' to R

4
 

 O has for coordinates ct, 0, 0, 0    in  R
4
 ,

 O will have for coordinates m1, 1.ct , m2, 1.ct , m3, 1.ct , m4, 1.ct   dans  R
4
'  ,

 so  ct' = m1, 1.ct and therefore    V =  
t '2K t '0
t '2C t '0

.c =
t2K t0
t2C t0

, c  .

 has the same value in R ' and  R
 
.

The experiment can be seen by the 2 observers O and O' as an experiment 

to measure the relative speed between O and O'  we have :  VO' O  R = VO O'  R' .

 We can therefore speak of the relative speed of  2 frames  in uniform translation R  and R '

 with  speed  V  et K V    and with common  module V  . 

 Note : See : N.M.J. Woodhouse . " Special Relativity " ,Springer 2002 
  If we consider an observer on O who observes a clock on O' which moves away from O,
  with a uniform speed and an observer on O' who observes an identical clock
 on O which moves away from O' we are in a completely symmetrical situation since
 we have the same speed in module in the two cases The physical laws being the same
 in the 2 Galilean frames in uniform translation the coefficient of expansion  
 of the` durations will be the same in the 2 measurements made in each of the 2 frames. 
 So if we denote N = ni, j  the inverse matrix of  M, knowing that t'= m1, 1 .t    et  t = n1, 1 .t'  , 

 by what precedes we will have m1, 1 = n1, 1 .

 We will then denote g this common value . 
 
 
To go further we need :

Lemma : If  M = mi, j  is symmetric matrix  then : X
t

MX = 0,c X 2 = 
n 5 M = 0 .

Proof : As M is symmetric M can be diagonalized : M = W
t

DW  where

W is orthogonal and D diagonal  then X
t

MX = X 
t W

t
DWX = 0 .

If  D is such that dij = 0 for i s j , and  Y =WX then >
i = 1

n

dii yi
2 = 0  ,c Y 2 = n,

for  Y = ei , with  ei i=1,....,n
 the canonical basis of  = n, we have 

dii$1 = 0 0 dii = 0 ,We can point out that the result is false

if  M is not symmetric : take  M =
0 1

K1 0
 : X

t
MX = 0 c X 2 = 

n ,

But we have the result  Xt MY,c X 2 = n,c Y 2 = n 5 M = 0 ,
since ei $M$ej = mi, j ,From this  we can deduce again the lemma  :

If M is symmetric and if we have Xt MX = 0,c X 2 = n 1  then c Y 2 = n   tYMY = 0 2     ,

and therefore   
t

XCY M XCY = 0 3  ,

so  tXMX C  tXMYC  tYMXC  tYMY = 0  and   tXMYC  tYMX = 0 .    
M being symmtreric and antisymmetric M = 0 .



Corollary : MX
t

G MX  ,c X 2 = 
n 5 M

t
GM = G .

Proof :

MXt G MX = Xt  Mt GMX = Xt GX ,c X 2 = n 5 Xt Mt GMKG X = 0,c X 2 = n,

 5 M
t

GM = G . 

Lemma : See : N.M.J. Woodhouse . " Special Relativity " ,Springer 2002 

  Let  A2M 4(ℝ) be a symmetrc matrix and  G=

1 0 0 0

0 K1 0 0

0 0 K1 0

0 0 0 K1

 .

Let's assume  c X   :  tXGX = 0 0  tXAX = 0 ,

 then  d a 2 =  such as  A = aG  .
Proof  : 
If A is  symmetric  we can write as  :

 A =
a ta

a S
 where a 2 = , a 2 M 3, 1(ℝ)  ,S 2M 3(ℝ)  S symmetric  .

We compute for   
t
X = u,

t
Y , Y 2 M 3, 1(ℝ) ,r 2 = :

 tXAX = r,tY
a ta

a S

r

Y
= ar

2
C rtYaC rtaYCtYSY  then  :

 tXMX = at
2
C 2 rtaY CtYSY   . 1

We note 
t
U = u, v, w   with u

2C v
2Cw

2
= 1  et 

t
X = 1, U    2

In this case  
t
XGX = 0 and then    

t
XAX = 0  , 

 and 1 can be written with  r = 1 , Y = U .

c U  defined by 2  :  tXAX =aC 2 taU CtUSU = 0 . 3
 If  U verifies  3   KU verifies   2  and  3  then:

   aC 2 
t
a KU Ct KU S KU  = 0  4  .

By  adding   3  and 4   it follows :
c U defined by 2  : a  CtUSU = 0 5tU aId

3
CS U = 0. 

If  tU aId
3
CS U = 0 c U  defined by 2  

U
t aId

3
CS U = 0 is also true forc U 2 = 

3
 .

According to the previous lemma :  S =Ka$Id3 .

 By substracting 3  et 4   we have : c U    
t
aU = 0  0 a = 0 .

 Then :

  A =a$

a 0 0 0

0 Ka 0 0

0 0 Ka 0

0 0 0 Ka

 = aG.



 This result is  a special case of  a more general result :
 Let be f and f' be two symmetric bilinear forms such the isotropic cone C f s 0

 then  d l s 0 2 =  f = l f'5 C f = C f'  .
cf : R.Goblot ."Algébre linéaire "Masson 1995 .

 Now we can prove :
 Theorem : Let M = mi, j   be the transformation matrix from R

4
 ' to R

4
 

 Let's assume  c X   :  tXGX = 0 0  tX MGt MX = 0  1  ,

                        M 1, 1 =   MK1
1, 1   2       then

                           MG
t

M = G
 Proof : cf : N ,M,J, Woodhouse , " Special Relativity " ,Springer 2002 

 From 1  and the previous lemma , since MG
t

M is symmetric ,

MGt M =aG for some a 2 = , as 0 since M is non singular.

 Hence  MGt M
K1

= aG
K1

= a
K1

G   and

                   MK1G = a
K1

G  Mt 0 MK1 = a
K1

G  MGt  .

 We have   M 1, 1 =   M
t

1, 1 =   M
K1

1, 1 = a
K1

G  MG
t

1, 1
 by 2

 and

 G  MG
t

=

1 0 0 0

0 K1 0 0

0 0 K1 0

0 0 0 K1

.

m1, 1 m1, 2 m1, 3 m1, 4

m2, 1 m2, 2 m2, 3 m2, 4

m3, 1 m3, 2 m3, 3 m3, 4

m4, 1 m4, 2 m4, 3 m4, 4

.

1 0 0 0

0 K1 0 0

0 0 K1 0

0 0 0 K1

 Hence G  MG
t

1, 1 = m1, 1 and  a = 1 .

    
Note : 1  is a consequence of  the invariance of the light cone .
 For 2  see the previous note .   
 

4 Lorentz matrix study :
We start  by giving the general properties of  Lorentz matrices then
we give an estimation of each term of these matrices .

We note  Xt  and  Mt  the transpose of the column vector  X and  the matrix M  .
Introduction :

Let F X = x1
2
 K >

i = 2

n

 xi
2
  with   X

t
= x1 ,..., xn  be the quadratic Lorentz

 form and let G be the matrice 
1                       0t

0          KId
=  nK1

 where 0 is the zeroK column of  = 
n K 1

 :

F X = Xt GX  c X 2 = n.
 We seek the matrices  M such 

F MX = F X  5 MX
t

G MX = X
t

 M
t

GMX = X
t

GX ,c X 2 = 
n
.



Lemma : If  M = mi, j  is symmetric then : X
t

MX = 0,c X 2 = 
n 5 M = 0 .

Proof : As M is symmetric M can be diagonalized : M = W
t

DW  where

W is orthogonal and D diagonal  then X
t

MX = X 
t W

t
DWX = 0 .

If  D is such that dij = 0 for i s j , and  Y =WX then >
i = 1

n

dii yi
2 = 0  ,c Y 2 = 

n
,

for  Y = ei , with  ei i = 1,...., n
 the canonical basis of  = n, we have 

dii$1 = 0 0 dii = 0 ,We can point out that the result is false

if M is not symmetric : take  M =
0 1

K1 0
 : X

t
MX = 0 c X 2 = 

n ,

But we have the result  Xt MY,c X 2 = n,c Y 2 = n 5 M = 0 ,
since ei $M$ej = mi, j ,From this  we can deduce again the lemma  :

If M is symmetric and if we have X
t

MX = 0,c X 2 = 
n
 1  then c Y 2 = 

n
   

t
YMY = 0 2     ,

and therefore   
t

XCY M XCY = 0 3  ,

so  
t
XMX C  

t
XMYC  

t
YMXC  

t
YMY = 0  and   

t
XMYC  

t
YMX = 0 .    

M being symmtreric and antisymmetric M = 0 .

Corollary : MX
t

G MX  ,c X 2 = 
n 5 M

t
GM = G .

Proof :

MXt G MX = Xt  Mt GMX = Xt GX ,c X 2 = n 5 Xt Mt GMKG X = 0,c X 2 = n,

 5 M
t

GM = G .
 Definition :

 If  M is such M
t

GM = G , M is called a Lorentz matrix .
Theorem 1 :
The Lorentz matrices form a subgroup L of  GLn = , group of  the invertible matrices of

dimension n .

 Proof : 1 As Id
= n

2 L , L s: and det Mt GM = det G =K1 0 det M s 0 ,

 0 Id
= n

4 L 4 GLn = .

2 Mt GM = G 0 G = GK1 = MK1G M t K1
= MK1G MK1

t

.

3  If  M 2 L and N 2 L  , we have MN
t

G MN = N
t

M
t

GM N = G .
From 1 , 2  and 3  we can infer the theorem . 
Corollary :

 Mt GM = G0 MK1 = G Mt  G =

m1, 1 Km2, 1 Km3, 1 Km4, 1

Km1, 2 m2, 2 m3, 2 m4, 2

Km1, 3 m2, 3 m3, 3 m4, 3

Km1, 4 m2, 4 m3, 4 m4, 4

 if   M = mi, j  .

A Lorentz matrix being invertible  by 1   , M has a  unique polar decomposition :
M = SO , S symmetric and definite positive , O orthogonal  .
We  refer to a classical theorem : theorem of  decomposition
 Any invertible matrix A can be written, in a unique way, as a product : A = SO = O1S1  ,



 where S, S1 are positive definite  symmetric matrices  , O , O1 are orthogonal matrices,

 here : S = A
t

A  , S = A A
t

 . 
Cf. F.R.Gantmacher : Theory of matrices. AMS Chelsea Publishing  1959 . 

In the case of  L we can be more specific .
For that we need some lemmas .
Cf. JKM. Souriau."Calcul Linéaire " ,PUF 1964  or J,Gabay 2000

 Lemma 1 :

 Let X 2 = n  be such that   Xt X = 1 ,Let N  the  matrix  define by :
      O

n K 1
  being  the null matrix of  M

n K 1
=  ,

            N = 
0              Xt

X       O
n K 1

  . Then we have c a 2 = : 

 M = exp aN =   

ch  a                                                 sh a  Xt

sh a X           Id
=n K 1

 C ch  a  K1 X X
t            1                    

 is a  Lorentz matrice of  M
n
=  such as det M = 1 and its eingenvalues are strictly positive .

 In short M is a definite positive symmetric Lorentz matrix .

 Proof : We have N 
2

= 
1                 0

0 n K 1     X Xt
   0

 n K 1
  being the zeroK column of dimension nK 1,

 since   Xt X = 1  and  X Xt X  Xt =  X Xt X Xt  we have   N 3 = N . 

 We can notice that for  all square matrix A and for all  a 2 = ,

 exp A = >
n = 0

CN
An

n!
    ,  sh a = >

n = 0

CN

  
a

2n C 1

2 nC 1 !
  ,  ch a = >

n = 0

CN

  
a

2 n

2 n !
 ,

therefore  exp aN = Id
=4

 CaN C
a

2
N

2

2!
 C

a
3
N

3!
  C

a
4
N

2

4!
 C.......C

 C
a

2 pK 1
N

2 pK 1 !
 C 

a
2 p 

N
2

2 p !
   C .......................................

 = Id
=n

 C sh a N C ch  a  K1 N2  

=

1 0 0

y

0 0 1

C
0            sh a   Xt

sh a X       O
n K 1

C 
ch  a  K1                  0

0 
n K 1

    ch  a  K1  X X
t

 which shows 1  .

 Now let's show that M is of  Lorentz that is to say Mt GM = G  .    
 We can remark that M is symmetric and  with  Id = Id

=n K 1

 

 

ch  a                                                  sh a  Xt

sh a X           Id C ch  a  K1 XXt
 

1                       0nK1t

0nK1        KId 
 =

ch  a                                                K  sh a  Xt

sh a X           K    Id C ch  a  K1 XXt
  

and 



ch  a                                                K sh a  Xt

sh a X           K Id C ch  a  K1 XXt

ch  a                                                  sh a  Xt

sh a X           Id C ch  a  K1 XXt
=  

a               b

c                d
.

Let us estimate  a, b, c, d .    

a = ch2  a  K sh2 a  XXt     = 1  , since  Xt X = 1 .

b = ch  a   sh a  Xt K  sh a  Xt  Id
=n K 1

 C ch  a  K1 X Xt

 = ch  a   sh a  X
t K  sh a  X

t K sh a ch  a  K1  X
t

X X
t

 = ch  a   sh a  Xt K  sh a  Xt K sh a ch  a  Xt Csh a Xt = 0 , 

c = ch  a    sh a  X K   Id
=n K 1

 C ch  a  K1 X X
t

sh a  X

= ch  a    sh a  X K  sh a  X K  sh a  ch  a  K1 X = 0 ,

 d = sh
2
 a X X

t K Id
= n K 1

 C ch  a  K1 X X
t 2

        but :

Id
= n K 1

 C ch  a  K1 X Xt Id
= n K 1

 C ch  a  K1 X Xt  

 = Id
= n K 1

 C ch  a  K1 X Xt C ch  a  K1 X Xt C ch  a  K1 
2
X Xt X Xt ,

 since  Xt X = 1 then X Xt X Xt = X Xt   association of matrix product  ,

 et ch  a  K1 
2

= ch
2

 a K 2ch  a  C 1

= Id
= n K 1

 C 2 ch  a  K1 Cch2  a K 2ch  a  C 1 X Xt  

= Id
= n K 1

C ch
2

 a K1 X X
t

= Id
=n K 1

Csh
2

 a X X
t

 finally  :

 sh2 a X Xt K Id
= n K 1

 C ch  a  K1 X Xt
2

=KId
= n K 1

  .

 Therefore  
a               b

c                d
= 

1                       0
t

0         KId
= n K 1

 and  M is of  Lorentz .  
Another proof possible is  :

exp aN G = 

ch  a                                                  sh a  Xt

sh a X           Id
= n K 1

 C ch  a  K1 X X
t

1                       0
t

0         KId
= n K 1

 

= 

ch  a                                                 Ksh a  Xt

sh a X           K Id
= n K 1

 C ch  a  K1 X X
t   ,

Gexp KaN  = 
1                       0

t

0         KId
= n K 1

 

ch  a                                                  Ksh a  X
t

Ksh a X           Id
= n K 1

 C ch  a  K1 X Xt

 



 = 

ch  a                                                  Ksh a  Xt

sh a X           K Id
= n K 1

 C ch  a  K1 X X
t

 therefore  exp aN G = Gexp KaN 0    exp aN Gexp aN = G

 as  M = exp aN  est symétrique M
t

GM = G et M est de Lorentz .
 For a third demonstration see : JKM. Souriau."Calcul Linéaire " ,PUF 1964  or J,Gabay 2000 .

 

Let us now show that det exp A = eTr A   for A 2 Mn = :

Let us consider A as an element of Mn C  . A is then trigonalisable 

and can be written :  A = PK1BP , with B upper triangular   whose diagonal
is composed of the eigenvalues l

i 
 of  A.

By relying  on the definition of the exponential  of a matrix  we  can write

 exp A = P
K1

exp B P .

By expanding exp B  into series and  by  noticing  that B 
k
 is   upper triangular c k R 1.

Then exp B  has  for diagonal  the  e
 l

i O 0.  Therefore 

det exp A = det exp B =?
i

e
 l

i 
= e
>

i
l

i 
= e

Tr A
 .

 

Let's go back to exp aN :

As aN is a zeroKtrace  matrix : det M = det exp aN = 1  and the eingenvalues of  

 M = exp aN  are strictly positive .

 

   
 
 
 
 
 



Lemma 2 :
 If  M is a matrix of  Lorentz  whose first column  K1  is

 of the  form : K1 = a , 0,..., 0
t

  then  M is  of the  form :

M =
e      Q

t

Q       W
       e =G 1 , Qt = 0, 0, 0 , W

t
W = Id

=n K 1
  1 . 

Conversely  any matrix of this form is of  Lorentz.
Proof :

 Let     M = 
a      Lt

0       C
  with  C 2M

3
=  , Lt = l1 , l2 , l3   .                  

As  Mt G M = G  we have :

  G =   
a          0

L       KC
  

a      Lt

0       C

=   
a

2
                  a L

t

aL      L Lt K Ct C
                                                                                               

    

 by identification a =G 1 , L = 0 , Ct C = Id
= n K 1

   .

 Conversely :
e        Q

t

Q       W
t

 G 
e       Q

t

Q       W
  = G .

 Theorem :
 Every matrix M of  Lorentz  can be put in the form :

                   M = exp aN  $ 
e        0

0      W
   with a 2 = , e =G 1 ,

N =  
0         X

t

X         O
 , with X 2 = n K 1such as  :  Xt X = 1 , W

t
W = Id

= n K 1  .   

 
This polar decomposition is unique . 
Proof :
Let  M be a matrix of  Lorentz  M = mi, j  and M1  the  first column of   M.

If M1
 

= mi, 1    then   :

                                  M1G
t M1 =  m1, 1

2 K m1, 2
2K...K m1, n

2 = G1, 1 = 1 .

We write  M1 = b, Y
t

 with b = m1, 1 and  Yt = m1, 2 , ..., m1, n  .

Therefore b
2
K YY

t
 = 1  and  b R 1 ,We can write  b = e$ch a  with

 e =G 1 and a 2 =  .Moreover  YY
t

= b
2
K 1 = sh

2 a  .

 If  as 0 put  X =
Y

e$sh a
 ,  we have  X

t
X = 1 .



 If a = 0  on a  M1 = e, 0, 0, 0
t

.

In all cases  M1 = e ch a , sh a X
t

 avec X
t

X = 1.

M1 is the first column of  e$exp aN  with N =   
0         X

t

X         O
.

 exp KaN $M is  a  matrix of  Lorentz since M and exp KaN  are of  Lorentz lemma 1 .
 Let's estimate the first column  K1  of this product :

         K1 =  

ch  a                                        sh Ka  Xt

sh Ka X           Id
=3

 C ch  a  K1 X X
t  $ M1

           
 

 X
t

X = 1 , ch
2 a  K sh

2 a = 1 and

Id
=3

 C ch  a  K1 X Xt  $X = ch  a $X     since X Xt X = X Xt X

We have : K1 
t = e , 0 , .., 0 ,The lemma  2 implies : 

    M = exp aN  $ 
e        0

0      W
.

 aN being a symmetric matrix , it is a diagonalizable matrix :aN = Pt DP  ,
 with D a diagonal matrix and P an orthogonal matrix :

therefore   exp aN = exp P
t

DP = P
t

exp D P  and

exp aN  is a  definite positive matrix .

Moreover  
e        0

0      W
t

 
e        0

0      W
= Id

=n
.

We have decompozed M into an  product of a definite positive symmetric matrix and 
an orthogonal one ,by the theorem of decomposition , there is uniqueness .

 Note :
1 If  n = 2 then  W =G 1  and if  W$e = 1 then  M is symmetric .

If  n = 3 then W =
cos q Ksin q

sin q cos q
or W =

cos 4 sin 4

sin 4 Kcos 4
 with q2 = , 42 = .

If  n = 4 then W is a spatial rotation  if  det W =C 1 .

If  not  W is a reflection, or a combination of a rotation and a reflection .

2  Let's consider  W't =  ct' , 0, 0, 0 with c a constant , t ' a real  variableO 0  and let W = MW' .

Let 's assume that  W
t

  can be written in the form :  W
t

= ct , ctb
1
, ctb

2
, ctb

3
 

with b
1
 , b

2 
, b

3
   real constants , t  a real  variable .



 If  M =
g          gb

t

    gb C   

 
e      0

0      W
 then t = e$g $t' and  e =

t$t'

t$t'
 .

 Now, we are going to explicit M in the case of  the special relativity :
Lemma 3 :

Let M be a matrix of Lorentz with n = 4 , e = 1 and let's consider  W'
t

=  ct' , 0, 0, 0
with c a constant , t 'O 0 a real  variable  and let W = MW' .

Let 's assume that  Wt   can be written in the form : 

 W
t

= ct , ctb
1
, ctb

2
, ctb

3
 with b

1
 , b

2 
, b

3
   real constants , t  a real  variable .

 Then if  M = exp aN  $ 
1        0

0      W
 , with N = 

0              X
t

X       O
n K 1

 and O
n K 1

  the null matrix 

 then 

if we write b = b
1
 , b

2 
, b

3

t
 and  X = X1 , X2 , X3

t
 ,

we have exp aN =
g          gb

t

    gb C   

 and then  M =
g gb

t
W

  gb CW

 ,

  with   C =

1C
g

2

1C g
b

2

1

g
2

1C g
b

1
b

2

g
2

1C g
b

1
b

3

g
2

1C g
b

2
b

1
     1C

g
2

1C g
b

2

2

g
2

1C g
b

2
b

3

g
2

1C g
b

3
b

1
       

g
2

1C g
b

3
b

2
    1C

g
2

1C g
b

2

3

,

  b = th a  X  and  g = ch  a  .
Proof :

 First we can point out that  
1        0

0      W
W' = W' donc W = exp aN W' . 

 We have to solve :



 

ch  a                                                  sh a  Xt

sh a X               Id
= 3

 C ch  a  K1 X X
t

1

0

0

0

t'=

1

b
1

b
2

b
3

 t  .

This implies   t

1

b
1

b
2

b
3

 = t'

ch  a

sh a X1  

sh a X2  

sh a X3  

 therefore t = ch  a t'  and 

ch  a

1

b
1

b
2

b
3

 =

ch  a

sh a X1  

sh a X2  

sh a X3  

 for  t's 0  0 ch  a b = sh a X 

 therefore b = th a X 0 b
2

= th2 a  since X
2

= 1 .

 We put b = b
2

 and g =
1

1Kb
2

 .

 As 1K th
2 a =

1

ch
2

 a
0 ch

2
 a =

1

1K th
2 a

=
1

1Kb
2

= g
2
 ,

 As ch  a R 1  we have g = ch  a ;

 As  sh
2
 a = ch

2
 a K 1 = g

2
K 1 =

1

1Kb
2
K 1 =

b
2

1K b
2

= g
2
b

2
 .

Let's sum up  g = ch  a  , g
2
b

2
= sh2 a  , b

2
= th2 a  .

On the other hand :

 g
2
b

2
= g

2
K 1 = gC 1 gK 1 0

g
2
b

2

1C g
= gK 1 = ch  a K 1

and XiXj =
b

i
b

j

th2 a
=

b
i
b

j

b
2

  therefore :

 ch  a K 1 XiXj =
g

2
b

2

1C g

b
i
b

j

b
2

=
g

2

1C g
b

i
b

j
 , that implies:



 Id
=3

 C ch  a  K1 X Xt =

1C
g

2

1C g
b

2

1

g
2

1C g
b

1
b

2

g
2

1C g
b

1
b

3

g
2

1C g
b

2
b

1
     1C

g
2

1C g
b

2

2

g
2

1C g
b

2
b

3

g
2

1C g
b

3
b

1
       

g
2

1C g
b

3
b

2
    1C

g
2

1C g
b

2

3

 = Id
=3

C
g

2 
b  b

t

1C g
= C

 
 

 As sh a Xi =
sh a b

i

th a
= ch  a b

i
= gb

i
   finally we have

exp aN =
g          gb

t

    gb C   

   .

 Then M =
g          gb

t

    gb C   

.
1        0

0      W
=

g gb
t

W

  gb CW

 . 

 Corollary : As M
K1

= G M
t

 G =

m1, 1 Km2, 1 Km3, 1 Km4, 1

Km1, 2 m2, 2 m3, 2 m4, 2

Km1, 3 m2, 3 m3, 3 m4, 3

Km1, 4 m2, 4 m3, 4 m4, 4

 if   M = mi, j ,

MK1 =
g K gb

t

  Kg W
t
b   W

t
C

 , MK1 is of  Lorentz 0 MK1 =
g  K gb

t
W'

  Kgb CW'

 then W
t
b = b  0 b

t
W = b

t
 and M ==

g gb
t

  gb CW

 .

Note : If  CW = u1 , u2 , u3  then u2
1 C u2

2C u2
3 = 3C g

2
b

2
 ,

 since ei
2

=  e 'i
2

=K1 for i = 1, 2, 3  and g
2
b

i

2
Ku

2
i =  e 'i

2
 .

 
 
Lemma 3 :



If we consider  e1'
t

=  0 , 1, 0, 0  , e1'
t

=  0 , 0, 1, 0 , e1'
t

=  0 , 0, 0, 1  ,

 f1 = M e1',  f2 = M e2' , f3 = M e3'  and 

 P the application P : a, b, c, d
t / b, c, d

t

 then  W = CK1 P f1 , P f2 , P f3  and b  is an eigenvector for C : C b = g  b  .

We have M.

0 0 0

1 0 0

0 1 0

0 0 1

=
gb

t
W

CW
=  f1  f2  f3  and   CW = P f1 , P f2 , P f3 .

 As Maplesoft gives 

 det CW = det C =
g

2
 b

1

2
C g

2
 b

2

2
C g

2
 b

3

2
C gC 1

1C g
= 1C

g
2 
b$b

1C g
= 1C 

g
2 
K 1

1C g
= g R 1 .

we have W = C
K1

P f1 , P f2 , P f3
 Maplesoft gives 

CK1     =

g 2 b2
2 C g 2 b3

2 C g C 1

g$ gC 1
K

g 2 b1 b2

g$ gC 1
K

g 2 b1 b3

g$ gC 1

K
g 2 b1 b2

g$ gC 1

g 2 b1
2 C g 2 b3

2 C g C 1

g$ gC 1
K

g 2 b2 b3

g$ gC 1

K
g 2 b1 b3

g$ gC 1
K

g 2 b2 b3

g$ gC 1

g 2 b1
2 C g 2 b2

2 C g C 1

g$ gC 1

=

 

 =

g  Kg  b
1

2
C 1

1C g
K
g b

1
 b

2

1C g
K
g b

1
 b

3

1C g

K
g b

1
 b

2

1C g

g  Kg  b
2

2
C 1

1C g
K
g b

2
 b

3

1C g

K
g b

1
 b

3

1C g
K
g b

2
 b

3

1C g

g  Kg  b
3

2
C 1

1C g

= Id
=3
K

g
 
b  b

t

1C g
 

 because g 2 b2
2 C g 2 b3

2 C g C 1 = g 2 b 2 K g 2 b
1

2
C g C 1 = g 2 K 1 K g 2 b

1

2
C g C 1

 = g 1C gK g  b
1

2
.

 

 As M =
g gb

t
W

  gb CW

 is a matrix of Lorentz :



g g b
t

g  W
t
$b W

t
$C

. 
1 0

0 K1
=3

.
g g b

t
 W

g b C W
=

1 0

0 K1
=3

   then :

   

 
Kb g

2
 b
t

C g
2

KC W g b
t

CW g
2
 b
t

KW
t

 C g b C W
t

 g
2
 b  W

t
 g

2
 b  b

t
 WK W

t
 C

2
 W

=
1 0

0 K1
=3

 and  

 g
2

1Kb
2

= 1 ;

 W
t

 g
2
 b  b

t
 WK W

t
 C2 W =K1

=3 0 W
t

 g
2
 b  b

t
 KC2  t

W =K1
=3 0 C2   = 1

=3 C g
2
 b  b

t
 since W

t
W

= 1
=3 ;

 W
t

 C g b = W
t

 g
2
 b 0 C b = g  b  .

  

 Note :
For the rest, we recall that the change of  basis matrix M has its columns equal 

to the expression of the basis vectors 
 of the new base expressed in the old basis.
Corollary :  
0 If  M is of  Lorentz we have M symmetric 5W = Id

= 3
 .

 With the uniqueness of the decomposition  we have 

 M =
g          gb

t

    gb C   

.
1        0

0      W
= M.Id

= 4
 .

1 If  M = M'.M"is a product of two matrices de Lorentz  with 

M =
g          gb W

t

    gb CW   

 , M'=
g '          g 'b '

t

    g 'b ' C'   

 , M ''=
g ''          g ''b ''

t

    g ''b '' C''   

   then     M =
g ' g '' b

t
' b '' C 1  g ' g ''b '' 

t
C g 'b ' 

t
C''    

g 'g ''b ' C g ''C' b ''  g ' g ''b ' b
t

'' CC' C''

  0 g = g ' g '' b
t

' b '' C 1  ,

 b = 
g 'b ' CC' b ''  

g ' b
t

' b '' C 1

 , C = Id
=3

C
g

2 
b  b

t

1C g
 and  W = CK1 g ' g ''b ' b

t
'' CC' C''  .

2

If we have W = Id
=3

 and P f1 // P e1   , P f2 // P e2 , P f3 // P e3  then  bi bj = 0  for i s j

5 b  is parallel to an ei  i = 1, 2, 3 .



W = Id
=3

0 C = P f1 , P f2 , P f3 =

l 0 0

0 m 0

0 0 n

 

since P f1 // P e1   , P f2 //P e2 , P f3 // P e3  ,

 0 C is diagonal 5 bi bj = 0  for i s j 5 b  is parallel to an ei  i = 1, 2, 3  .

3 If we have  P f1 //P e1 , P f2 // P e2 , P f3 //P e3  and

 b  is parallel to an ei  i = 1, 2, 3  then W =

G 1 0 0

0 G 1 0

0 0 G 1

 :

 b  is parallel to an ei  0 C is a diagonal matrix  , 

P f1 //P e1 , P f2 // P e2 , P f3 //P e3  0 CW is also a diagonal matrix

 0W is diagonal 0W =

G 1 0 0

0 G 1 0

0 0 G 1

 since W is orthogonal .

4  Let M be a matrix of  Lorentz such e = 1 and P fi  = l
i 
P ei   with l

i
O 0  for i = 1, 2, 3,

 then W = Id
= 3

.

 Let us consider Q =
1 0

0 w
 with  w a rotation de = 3 such as PQ e1 = mb  , mO 0 .

 Since  P fi  = l
i 
P ei   with l

i
O 0  for i = 1, 2, 3  and b   common to  both basis B and B ' 

PQ e '1 =m 'b  , m 'O 0 .

We can consider  now :  

                              B   
M

   B '
                          QY               YQ         with M ' a change of  basis matrix of  Lorentz.

                            B
1
 

M '
 B '1

 If we write M =LW  with W =
1 0

0 W
 and L = 

g          gb
t

    gb C   

 :

      M '= Q
t

MQ = Q
t LWQ = Q

t LQ Q
t WQ

 since M' and Qt LQ  are symmetric and Qt WQ orthogonal  then W = Id
= 3

 by uniqueness .

 Corollary : 
 Let M be a change of  basis matrix of  Lorentz such e = 1  associated to 2 observers O and O':

 B = ei i = 0, 3
   

M
 B '= e 'i ì =`0, 3

 ,Let's consider another basis B
1

= f  'i i = 0, 3
 associated to O':



B ' and B
1
 being associated  to the same observer , the change of  basis matrix 

is an orthogonal matrix Q =
1 0

0 w
 with w

t
w = Id

= 3
 , B

1
 chosen as P fi '  = l

i 
P ei   

with l
i
O 0  for i = 1, 2, 3 and  P the application P : a, b, c, dt / b, c, dt : 

 Let's M '   the matrix of  Lorentz from B to B
1
 :  

         B   
M

 B '                   

   M ' a       b  Q         
               B

1

   then MX '= M 'QX' with M ' = 
g          gb

t

    gb C   

 and Q =
1 0

0 w
 with w

t
w = Id

= 3
 .

 



  
A special case :
 Lemma 4 :

Let's assume that b = b
1 
, 0 , 0

t
with b

1 
R 0 ,We put d

i, j
= 1 if  i = j else d

i, j
= 0 .

Let's consider ei = d
i, j

 , j = 0,..., 3 and  M ei   for i = 0,..., 3 .

Let's put  X0 , X1 , X2 , X3 
t = X1 , X2 , X3 

t .

We assume that Mei  = li 
ei  with l

i
O 0 for i = 1,..., 3  1  ,

 we have : 

                          M =

g gb
1 

0 0

gb
1 

g 0 0

0 0 1 0

0 0 0 1

 
Proof : 

 As  1C
g

2

1C g
b 

2
1 =

1C g C g
2 
b

2
 

1C g
=  

 1C gC g
2
K 1

1C g
= g   , 

since g
2
K 1 =

1

1Kb
2
K 1 =

b
2

1Kb
2

= g
2 
b

2
 we can write :

 M = exp aN $ 
e        0

0      W
=

g gb
1 

0 0

gb
1 

g 0 0

0 0 1 0

0 0 0 1

e 0 0 0

0 w
2, 2

w
2, 3

w
2, 4

0 w
3, 2

w
3, 3

w
3, 4

0 w
4, 2

w
4, 3

w
4, 4

.

 M e1 =

g b
1 

 w
2, 2

g w
2, 2

w
3, 2

w
4, 2

 , M e2 =

g b
1 

 w
2, 3

g w
2, 3

w
3, 3

w
4, 3

 and M e3 =

g b
1 

 w
2, 4

g w
2, 4

w
3, 4

w
4, 4

 

 then , by 1 : 
e        0

0      W
=

e 0 0 0

0 w
2, 2

0 0

0 0 w
3, 3

0

0 0 0 w
4, 4

 .



 As W
t
W = Id

=3
 , M =

g gb
1 

0 0

gb
1 

g 0 0

0 0 1 0

0 0 0 1

e 0 0 0

0 e
1

0 0

0 0 e
2

0

0 0 0 e
3

 with e
i
=G 1.

 As l
i
O 0 and gO 0 then e

i
= 1 .

 We can check Mt GM = G and Mei  = li 
ei  with l

i
O 0  for i = 1,..., 3.

 

In the case where e = 1 and Mei  = li 
ei  with l

i
O 0 for i = 1,..., 3 , 

b
1 
R 0 , we have :

M =

g gb
1 

0 0

gb
1 

g 0 0

0 0 1 0

0 0 0 1

  .

 
Another case :
Lemma 5 :

 Let M be a matrix of  Lorentz such e = 1 and Mei  = li 
ei   with l

i
O 0  for i = 1, 2, 3,

for any b  we have W = Id
= 3

 and M =
g          gb

t

    gb C   

 with  

 C =

1C
g

2

1C g
b

2

1

g
2

1C g
b

1
b

2

g
2

1C g
b

1
b

3

g
2

1C g
b

2
b

1
     1C

g
2

1C g
b

2

2

g
2

1C g
b

2
b

3

g
2

1C g
b

3
b

1
       

g
2

1C g
b

3
b

2
    1C

g
2

1C g
b

2

3

.

Proof :

 Let's consider  P =
  1            0

    0       W  
 such W

t
W = Id

=3
 and P

0

b
= le

1
 with lO 0



 and  P
0

b
= l 'e'1  since   b  is common to  both  O and O'  

and Me1  = l
1 

e1   with l
1
O 0.

We can consider  now :  

                              B   
M

   B '
                          P Y               YP

                            B
1
 

M '
 B '1

With  the  basis B
1

= Pe0 = e0 , Pe1 , Pe2  ,  Pe3  

and B ' 1 = Pe'0 = e'0 , Pe'1 , Pe'2  ,  Pe'3  M is represented by  M'= PM P
t

 .

 We have M'Pei = PM Pt Pei = PM ei = l
i
Pei   for i = 1, 2, 3 .

 P
t

GP =
  1            0

    0       W
t

  

  1            0

    0       KId
=3

  

  1            0

    0       W  
= G  therefore 

 M ' is of  Lorentz .

If  W = ct

1

b
1

b
2

b
3

 , PW = ct

1

Wb
= ct

1

b'1

b'2

b'3

= ct

1

l

0

0

 and then

 b ' = b'1 , 0 , 0
t

with b
1 
R 0 .

The lemma 4 shows that M'= 

g gb'1 0 0

gb'1 g 0 0

0 0 1 0

0 0 0 1

 .

If  L b =
g          gb

t

    gb C   

and W
t

= 
1      0

0      W
are the factors 

of the polar decomposition of  M lemma 3 ,

M' = P
t

MP = P
t L b W

t
P = P

t L b P  P
t W
t

P   .

M' is symmetric, P
t L b P is symmetric and  P

t W
t

P  is orthogonal  since

  Pt W
t

P
t

 Pt W
t

P = Id
= 4 ,For short M ' = M '$ Id

= 4
= Pt L b P  Pt W

t
P .

As the  decomposition is unique   P
t W
t

P = Id
= 4 and  M' = P

t L b P  .

and then  W
t

= Id
= 4

 .



 
 
  
 

  

 
 
 
 
 



Eigenvalues and eigenvectors  when W = Id
= 3

 .

 Lemma 4 :

 With the lemma 1 notations :

 N =

0 x1 x2 x3

x1 0 0 0

x2 0 0 0

x3 0 0 0

 avec X =

x1

x2

x3

 et X.X = 1 .

As the eigenvalues of  N  are  1,K1, 0, 0  and the eigenvectors are :

1

x1

x2

x3

,

K1

x1

x2

x3

,

0

Kx2

x1

0

,

0

Kx3

0

x1

 If we consider B the basis made of thes eigenvectors and  the diagonal matrix 

 made of the eigenvalues of  N  : N = BDBK1,Don't forget  that   x1
2C x2

2C x3
2 = X.X = 1 .

1 K1 0 0

x1 x1 Kx2 Kx3

x2 x2 x1 0

x3 x3 0 x1

.

1 0 0 0

0 K1 0 0

0 0 0 0

0 0 0 0

.

1 K1 0 0

x1 x1 Kx2 Kx3

x2 x2 x1 0

x3 x3 0 x1

K1

=

0
x1

x1
2C x2

2C x3
2

x2

x1
2C x2

2C x3
2

x3

x1
2C x2

2C x3
2

x1 0 0 0

x2 0 0 0

x3 0 0 0

Let's consider now  exp aN , as exp aN = exp BaDBK1 = Bexp aD BK1 and 

  thus :

 exp aN =

1 K1 0 0

x1 x1 Kx2 Kx3

x2 x2 x1 0

x3 x3 0 x1

.

e
a

0 0 0

0 eKa 0 0

0 0 1 0

0 0 0 1

.

1 K1 0 0

x1 x1 Kx2 Kx3

x2 x2 x1 0

x3 x3 0 x1

K1



However g = ch a 5 a = ln gC g
2
K 1 0 e

a
= gC g

2
K 1 ,

as g
2
K 1 = b

2
g

2
0 e

a
= g 1C b =

1Cb

1Cb 1Kb
=

1Cb

1K b
 and

e
Ka

= g 1Kb ==
1K b

1C b
  with  b = b$b  . 

We assume that bs 0 if not exp aN = Id .

As coth a = b
K1

and X = coth a b  : 

 We assume that b s 0

exp aN =
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=
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= 
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We can verify :
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=
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 We can point out that the 2 first eigenvectors are light vectors  .
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  For short the eigenvalues are  g 1Cb , g 1Kb , 1, 1   and 

the eingeinvectors 
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Eigenvalues  of  a product of  2  symmetric matrices  :
If A  and  B  are  real symmetric  matrices  such  that  the  eigenvalues of A  are  strictly  positive 
 and  those  of  B  positive  then  the  product  AB  is  also  =Kdiagonalizable  .

We  remind  that  if  A  is  symmetric  with positive eigenvalue  then  there  exists 

  a  single  matrice  symmetric with  eigenvalues   positive A

1

2
 such as  A

1

2 ,A

1

2
= A .

Proof :

We can write  AB = A

1

2 A

1

2 B A

1

2 A
K

1

2  , thus AB and  A

1

2 B A

1

2 have  the same eigenvalues  .

 However  A

1

2
B A

1

2

t

= A

1

2
B A

1

2
 thus A

1

2
B A

1

2
is symmetric therefore  =Kdiagonalizable .

  

 Note : If  W s Id
= 3

 M  may have no real eigenvalues for example  b = 0  and W being a rotation .



5 SpaceK time vectors properties :
In a Minkowski space, the quadratic form associated with this space
 makes it possible to classify the vectors into 3  categories that we are going to study.
 Vectors in  a  MinkowskiK space  

JKM. Souriau."Calcul Linéaire " ,PUF 1964  .
 We consider the vector space =4  of  4 dimensions with the quadratic form of Lorentz :

 F X = x1
2
 K >

i = 2

4

xi
2
  where   Xb = x1 ,..., x4  , whose matrix is :

  G =
1                       0

t

0               KId
=3

 where 0 is  the null column of  =3 .

We give  = 4 a FKorthonormal basis .

We want to describe the sets of vectors =4 defined  according to the sign of F X . 
We distinguish 3 subsets :

 E C = X 2 = 4 /F X O 0  W 0 : time vectors,

EK= X 2 = 
4
/F X ! 0 W 0  : space vectors,

E0 = X 2 = 4 /F X = 0  : isotropic vectors  .

Whether or not to add 0  to E C  and  to EK varies according to different  authors.

 We  notice  that  the  nature  of  vectors  is  independent  of  the  chosen basis  of  =4 F K orthonormed .
 If  we  note  P  the  matrix  of  passage  from  the  basis  B  to   the  basis  B ' ,

 if  P  is  a  matrix  of  Lorentz; P t GP = G , X = PX ', Y = PY '  then 

  Xt  GX = Xt ' P t G PX' = Xt ' P t GP X'= Xt 'GX' .

  
 Lemma 1 :

We consider the vector space = 4  of  4 dimensions with the quadratic form of Lorentz.
In =4  there is a 3K dimensional subspace of space vectors . 
 Proof :

 Consider for example : X 2 = 4 / x1 = 0 .

 Lemma 2 : 

We consider the vector space = 
4  

 with the quadratic form of Lorentz.
There are no time vectors subspace of dimension O = 2.
Proof :
Because otherwise there exists a subspace F of dimension at least equal  to 2 of time vectors  .
As there exists a subspace G of space vectors of dimension 3 and as FX G = 0  and
 therefore  dim = 4 R 5 .
Lemma 3 : 
We consider the vector space with the quadratic form of Lorentz. 

 Let   2 vectors of  = 4  X and Y s 0  such that Xt GX R 0 , Yt GYR 0 and  Xt GY = 0 
 then X and Y are collinear and isotropic.
 Proof
We consider X and Y 2 nonKzero time vectors.
If they are independent they generate a subspace  of dimension 2 of positive vectors :

 If  Z = lXCmY then Z
t

GZ  = lXC mY
t

G lXCmY = l
2
 X
t

GX Cm
2

Y
t

GY R 0 .

  It is  impossible therefore :d l s 0 2 = such that



 X = lY  and then   : 0 = Xt GY = l Y t GY =
1

l
X t GX .

Lemma 4 : 

1  Any nonKzero vector X orthogonal to a nonKzero time vector Y  X
t

GY = 0  is a space vector. 
2  2 nonKzero isotropic independent vectors X and Y are never orthogonal.

Proof :

1 If  X was a nonKzero time vector :  Xt GX O 0 and Y such that   Xt GX O 0 then Yt GY! 0

 because otherwise Y
t

GYR 0  and as  X
t

GX O 0 and  X
t

GY = 0 , according to lemma 3 X would be 
isotropic, which is contradictory.

2  Because otherwise 0 = Xt GY = Xt GX =  Yt GY  according to lemma 5 X and Y are linearly dependent.

 Definition : For any time vector Xt GX R 0 we set X G = Xt GX  .

 Lemma 5 :  
Let 4 be a bilinear symmetrical   nondegenerate form on a vector space E of dimension n,
  then for any base B e1 , ...., en , if we consider the matrix representing 4 in B 

  Q = 4 ei , ej , then the determinant of  Q is of the sign of  K1 n K p 

 where p is the  positive index of inertia of  4.
 Proof :
There exists a base B ' e'1 , ...., e'n  where the matrix representing 4 is the form :

   Q  ' = 

Id
=p            0

0        KId
=q

 ,then   det Q' = K1 n K p  .

 Let  S  be the  matrix  of  passage  from  the  basis  B '  to  the basis B   we have 

 det Q = det St Q'S = det Q' det S 2   0 sign det Q = K1 n K p .      

 Lemma 6 : CauchyKSchwartz 's counter inequality . 

 We have X
t

GY R X G Y G  for any time or isotropic vectors.

Proof : 

Let us consider the matrix S made up of the 2 columns X 2= 
4
 and  Y 2= 

4
: S = X, Y . 

We assume that X and  Y are nonKzero time vectors because if one of them is isotropic 
 or zero the `inequality is obvious.

We have  S
t

GS =
X
t

Y
t

G X, Y  =
X
t

GX        X
t

GY

Y
t

GX         Y
t

GY
 ,

 and det  S
t

GS = X G
2 Y G

2K  X
t

GY
2
 .

If  det  St GS = 0 the lemma is proved .

If  det  St GS s 0 and if  X = lY , l 2 =) ,

 then  det  S
t

GS =
l

2
 Y
t

GY      l Y
t

GY

l Yt GY        Yt GY
= 0

It's impossible therefore X and Y are non coplanar : X and Y form a base S = X, Y
 of a vector subspace F of` = 4 of dimension 2.



As  St GS =
Xt GX        Xt GY

Y
t

GX         Y
t

GY
 , St GS    defines a  form ,  bilinear and  symmetrical Y

on  F  by Y u, v = U
t

 S
t

GSV  with  u = SU   and  v = SV . 
Let 4 be thebilinear form defined` on =4  whose matrix is G.
We immediately check that 4

/F
 is also a bilinear symmetrical form on F. 

 Let us show that 4
/F

 is  regular , that is :

F t = u2 F / 4
/F

u, v = 0  ,c v 2 F = 0 .

 S , being a basis of  F, is a bijective application of` =2 on F.

 If  G is the representation of  4 = 4, S
t

GS  is the representation of   4
/F

 in F

 provided with the base S : let u and v  2 vectors of  F; 

 we have if  U
w

 and  V
w

 the representations of u and v in =4,

 U and V in F with the base S and U
w

= SU , V
w

= SV  :

 4 u, v = 4
/F

u, v = U
wt

G V
w

= Ut  St GSV.

 So let u u2 Ft  and  v 2 F , u = SU   and  v = SV with U and V element of` = 2. 

 We have 4
/F

u, v = V
t

 S
t

GSU = 0  c V 2 =2  and therefore S
t

GSU = 0  

as det SGS  s 0 we have U = 0. 
 4

/F
  is indeed a bilinear symmetric regular form on F.

The  lemma 5 applies : sign det St GS = K1 2K p , p the inertia index of 4
/F

 

 but  F being of dimension 2,  according to  the lemma 2 there is no subspace of dimension O 
= 2 of time vectors

 and F contains X, time vector. 
  4

/F
 being a bilinear symmetrical regular form on F,  4

/F
 can  be represented 

 in a 4
/F
Korthogonal basis by a diagonal matrix composed̀  of  1, K1 and 0. 

The nature of the vectors remaining  unchanged, the only possibility is therefore 1 and K1.
So the only possibility  for p is p = 1.

Therefore sign det S
t

GS =K1  et donc X G
2

Y G
2 !  X

t
GY

2
 .

Note;
 We  recall  that  the set  of  time vectors  do  not  form  a  vector subspace  

 take  for example; X = 4, 1, 1, 1
t

 et Y = K4, 1, 1, 1
t

  et XCY = 0, 2, 2, 2
t

 .
 
Lemme 7 :
 Let X, Y and Z  3 time or isotropeKvectors   we then have :

                        Xt GY Yt GZ Zt GX R Xt GX Yt GY Zt GZ
 
Proof : 
 Let's consider S = X, Y, Z  , we have :



 St GS =

Xt

Y
t

Z
t

1 0

0 KId
=3

X, Y, Z =

X1 KX2 KX3 KX4

Y1 KY2 KY3 KY3

Z1 KZ2 KZ3 KZ4

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y3 Z4

 

=

X
t

GX X
t

GY X
t

GZ

Yt GX Yt GY Yt GZ

Zt GX Zt GY Zt GZ

 

 and  det  S
t

GS =     X
t

GX Y
t

GY$ Z
t

GZK Y
t

GZ$ Z
t

GY

                          KX
t

GY Y
t

GX$ Z
t

GZK Y
t

GZ$ Z
t

GX

                         C X
t

GZ Y
t

GX$ Z
t

GYK Y
t

GY$ Z
t

GX

                        = X
t

GX$ Y
t

GY$ Z
t

GZ KX
t

GX$ Y
t

GZ$ Z
t

GY

                        KX
t

GY$ Y
t

GX$ Z
t

GZC X
t

GY$ Y
t

GZ$ Z
t

GX

                         C Xt GZ$ Yt GX$ Zt GYK Xt GZ$ Yt GY$ Zt GX

                          = Xt GX$ Yt GY$ Zt GZK Xt GX Yt GZ
2

                        KYt GY$ Xt GZ
2
K Zt GZ Xt GY

2
 C 2$ Xt GY$ Yt GZ$ Zt GX ;

 But   Xt GY R Xt GX Yt GY  , Yt GZ R Yt GY Zt GZ ,  Zt GX R Zt GZ Xt GX   ,
then :

                        KX
t

GX Y
t

GZ
2
  KY

t
GY$ X

t
GZ

2
K Z

t
GZ X

t
GY

2

                     %KXt GX$ Yt GY$ Zt GZ KYt GY$ Zt GZ$ Xt GXK Zt GZ$ Xt GX$ Yt GY

                     =K3$ X
t

GX$ Y
t

GY$ Z
t

GZ  ,

 and then  det  S
t

GS %K2$ X
t

GX$ Y
t

GY$ Z
t

GZC 2 X
t

GY$ Y
t

GZ$ Z
t

GX .

Considering the sign  of  det  S
t

GS : 

If det  S
t

GS = 0 the lemma is proved .

If det  S
t

GS s 0  and if  X = lYCmZ , l 2 =) , m2 =) ,

 we have det  St GS = det

Xt GX Xt GY Xt GZ

Y
t

GX Y
t

GY Y
t

GZ

Z
t

GX Z
t

GY Z
t

GZ

= 0 because l Yt Cm Zt GX = l Yt GXCmZt GX

 it's impossible therefore  X , Y et Z  are   nonKcollinear and form the basis of a vector subspace F
of  = 4 of dimension 3.

As  S
t

GS =

X
t

GX X
t

GY X
t

GZ

Y
t

GX Y
t

GY Y
t

GZ

Zt GX Zt GY Zt GZ

 , S
t

GS is a bilinear symetrical form on   F.

 By  making  a similar reasoning  to  that  of  the  previous  lemma   we  find  that

 sign det S
t

GS = K1
3K 1

 = 1 .

Therefore  det  S
t

GS  O 0 and the lemma is proved.
 Lemma 8 :



We consider = 4 provided  with  the  quadratic  form  defined by  G = 
1                0

0        KId
=3

 ,

then the union of nonKzero time vectors and the  isotropic vectors are divided 
into 2 opposite classes C

1
 and C

2
  and if  X and Y are nonKzero time vectors we have :

      Xt GYR 0 5 X and Y belong to the same class  ,

     X
t

GY% 0 5 X and Y belong to opposite  classes  .

Two vectors X and Y  belonging to a same class check  Xt GYO 0 unless they are isotropic and parallel.
 In this case they belong to the same class if their ratio is a strictly positive number.
 Proof : 
Let X0 be an arbitrary nonKzero time vector. A nonKzero time vector Y is never orthogonal to X0

 because otherwise by lemma 4, Y would be a space vector soY
t

GX0 O 0  or  Y
t

GX0 ! 0. 

We say that Y 2 C
1  

 in the first case otherwise Y 2 C
2  

. The classes are opposite :

 if Y 2 C
1  

thenKY 2 C
2  
,The lemma 7 shows that :

 X0
t

GY Y
t

GZ Z
t

GX0 R X0
t

GX0 Y
t

GY Z
t

GZ R 0 , c Y , c Z  time vectors .

If  Y and Z belong

Kto the same class C
1          

 : X0
t GYR 0 et Z

t
GX0 R 0 0 Y

t
GZR 0 ,

K to the same class C
2  

       : X0
t GY% 0 et Zt GX0 % 0 0 Yt GZR 0 

 K to different classes : X0
t

GY% 0 et Z
t

GX0 R 0 0 Y
t

GZ% 0   or

                                                 X0
t GYR 0 et Z

t
GX0 % 0 0 Y

t
GZ% 0  .

Conversely : If  Yt GZR 0 

                      either  X0
t GYR 0 and  Zt GX0 R 0 0 Y and Z belong to the same class C

1  
,

                     or X0
t GY% 0 and  Zt GX0 % 0 0 Y and  Z belong to the same class C

2 
,

 in the same way   if  Y
t

GZ% 0  0 Y et Z belong to different  classes  .    
The last part of the lemma is a direct consequence of  lemma 3.
Note : In an arbitrary way the elements of one of the 2 classes are called
 vectors of  future, the elements of the other vectors of` past.
Lemme 9 :
 Soient X et Y  2 vecteurs de temps ou isotropes .
 Si X et Y appartiennent à la même classe , leur somme est encore un vecteur de la même classe ,

 et ils vérifient la contreKinégalité triangulaire  si on note  X G = X
t

X   si X
t

X R 0 :

   XCY G R X GC Y G .

  
 Proof : 

 From the lemma 8  X
t

GYR 0   and from  the lemma 6 X
t

GY R X G Y G and then 

 XGY R X G Y G , therefore :

  XCY G
2 = XCY G XCY

t
= X G

2C Y G
2C 2 Xt GY

 R X G
2C Y G

2CC 2 Y G X G = X GC X G
2  . 

If  V is a vector taken in the same class of  X et Y  , we have :



X
t

GV R 0 and  Y
t

GV R 0  0 XCY GV R 0 
t

 and  XCY belons to the class of  V
therefore  to the class of X and  Y.
 Note :
1 If  X and Y are 2 vectors of class different the sum can be of any kind :

 If X = 2, 1, 1, 1
t

 , X
t

GX = 1 and Y = K3, 1, 1, 1
t

 , Y
t

GY = 6,then   X
t

GY =K3   , 

  XCY = K1, 2, 2, 2t  , XCY G XCY =K11 space vector  .
t

If X = 4, 1, 1, 1
t

 , X
t

GX = 13 and Y = K1, 0, 0, 0
t

 , Y
t

GY = 1,then  X
t

GY =K4   , 

  XCY = 3, 1, 1, 1
t

 , XCY G XCY = 6 time vector .
t

 

If X = 3, 1, 1, 1t  , Xt GX = 6 and Y = K2,
3

3
K 1,

3
3

K1,
3

3
K 1

t

 , Yt GY = 
2 3

3
,

 then   Xt GY =K3   ,   XCY = 1,
3

3
,

3

3
,

3

3

t

 ,

 XCY G XCY = 0 isotropic vector .
t

          
 2  The triangular counter  inequality gives a geometric explanation of the twinKparadox .
 



6 Classification of Lorentz matrices. 
 We have seen that the set of Lorentz matrices Lo of order n forms a subgroup of   GL 4 = , 

 the group of invertible matrices . We can write a Lorentz matrix M in the most general writing :

M = exp aN   
e        0

0      W
  where a2 = , N =  

0         Xt

X         O
 , X 2 = 3

 As  M
t

GM = G avec G =
1                       0

t

0                KId
=3

 , det M =G 1.

But   det exp aN = eTr aN = e0 = 1  therefore

det M = det
e        0

0      W
= e$det W  . 

2  Determination of  e 

 Let  V0 be a nonKzero time vector V0
t

GV0 O 0  and M a Lorentz matrix. We have : 

  MV0
t

G MV0 = V0 
t

M
t

GM V0 = V0
t GV0 O 0 so MV0 is also a time vector.

  Let h = sign V0
t G MV0  si  h = 1 , V  and MV0  belong to the same class otherwise  h =K1 , 

V and MV0  belong to different classes . 

 Now let V be another nonKzero time vector . As previously MV is also a time vector.

  As  MV
t

G MV0 = V 
t

M
t

GM V0 = V
t

GV0, we have the equivalence : 

Class V = Class V0 5 Class MV = Class MV0 .

So h depends only on M and is independent  of  V. 

Let us calculate h  for the vector E0 = 1, 0, 0, 0
t

:

E0 ME0 = 1, 0, 0, 0
g          gb

t

    gb C   

  
e        0

0      W

1

0

0

0

= ge   therefore   h = e .

If  e = 1 we will say that M is orthochronous otherwise if  e = K1, we will say that M is antichronous.

As det M = e$det W   we have 

det M =C 1 5 e =C 1  and det W =C 1 or e =K1 and  det W =K1  .

And   if  det M =K1 5 e =K1  et det W =C 1 or e =C 1 and det W =K1 . 
 Let be the following subsets of  Lo :
 Roo = M/ e =C 1  et det W =C 1 , the orthochronous rotation group ,
 Roo is a group called the  restricted Lorentz groupsincefor  2 matrices of Roo : 
M et M ' , we have :

det MM'K1 = det M detK1 M' = e$det W e'$det W' =C 1 .

Roa = M/ e =K1  et det W =C 1 , the  antichronous rotations  ,

Reo = M/ e =C 1  et det W =K1 , the  orthochronous inversions ,

Rea = M/ e =K 1  et det W =K1  , the antichronous inversions     .

We note  RooWRoa = M/ det W =C 1  is a  group , the  rotation group  ,



and RooWReo = M/ e =C 1 , the   orthochronous group,

and  RooWRea = M/ e =C 1 and det W =C 1 or e =K 1  and det W =K1 , the pair group.
 

We  can  also  consider  the set  of  matrices  of  Lorentz  such  as W = Id
=3

 , e =C 1 and    b = b
x
i :

 Therefore  M = 

g gb
x

0   0

gb
x

g 0    0

        T          Id
= 2

  with T =
0         0

 0         0
  .

 It  is  easy  to  check  that  this  set  is a  group  of  composition : the special group or boost :
 We  also  note  that :

 MM'= 

g gb
x

0   0

gb
x

g 0    0

T          Id
=2  

 

g ' g 'b'x 0   0

g 'b'x g ' 0    0

T          Id
=2  

= gg ' 

1Cb
x
b'x   b

x
 C  b'x 0   0

b
x
 C  b'x  1C b

x
b'x 0    0

T          Id
=2  

 .

 We notice that this group is commutative .




	
	
	
	
	
	
	



